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Abstract—Programming tasks are an important part of 
teaching computer programming as they foster students to 
develop essential programming skills and techniques through 
practice.  The design of educational problems plays a crucial role 
in the extent to which the experiential knowledge is imparted to 
the learner both in terms of quality and quantity. Badly designed 
tasks have been known to put-off students from practicing 
programming. Hence, there is a need for carefully designed 
problems. Cellular Automata programming lends itself as a very 
suitable candidate among problems designed for programming 
practice. In this paper we describe how various types of problems 
can be designed using concepts from Cellular Automata and 
discuss the features which make them good practice problems 
with regard to instructional pedagogy. We also present a case 
study on a Cellular Automata programming exercise used in a 
MOOC on Test Driven Development using JUnit, and discuss the 
automated evaluation of code submissions and the feedback 
about the reception of this exercise by participants in this course. 

Keywords—programming tasks; unit testing; test driven 
development; MOOC; automated grading 

I.  INTRODUCTION  
The well-known Game of Life [7], a John Conway creation, 

has withstood the test of time among popular programming 
problems for good reason. It exercises several useful 
programming concepts (like the use of random numbers, 2-D 
arrays, functions, loops and recursion), can be extended to 
include advanced programming concepts and methodology 
(such as Object Oriented Programming, Design Patterns, Test 
Driven Development, UI design, Interactive Programming, 
etc.) and can be scaled to varying levels of difficulty with ease. 
While some problems in Cellular Automata and Game of Life, 
are well within the reach of programming novices, others are 
difficult enough to be considered for advanced programmers in 

specialized areas (such as parallel programming or ecology 
modelling, etc.). Most importantly it is fun and engaging to 
program Cellular Automata and watch their transitions. In this 
paper, we explore the suitability of Cellular Automata 
challenges for developing a wide variety of programming 
assignments, appropriate for audiences ranging from novices to 
experts. 

Programming ability basically rests on two pillars. One is 
formed by the theoretical foundations of knowledge about 
computers, programming languages, tools and formal methods 
(i.e. knowledge which is of a declarative nature, for example— 
being able to state how a “for” loop works). The other is the 
ability to apply this knowledge hands-on. 

The famous adage “I hear and I forget. I see and I 
remember. I do and I understand”, as succinctly put by 
Confucius, is very much relevant even to this day in pedagogy. 
But while much of the instructional content focuses on 
theoretical aspects of computer programming, it is 
programming assignments and exercises that play a major role 
in helping students learn programming skills and techniques 
through practice. 

Providing students with quality homework, exercises, and 
assignments is integral to the success of any course. 
Particularly so, in introductory courses where the major share 
of student’s learnings comes from [1]. Often however, the tasks 
set for practice are not considered as a vehicle that can direct 
learning behaviors in students [2]. To add to this, most 
programming assignments are what most students would 
classify as boring: mathematical problems (except games), 
sorting, string manipulation and others all succeed in helping 
students to learn the concepts, but few are met with any real 
enthusiasm and fewer still inspire true creativity [3]. 



In Section 3 we begin with a study of interesting 
programming tasks that have been previously used in 
classroom courses, MOOCs and other instructional settings. In 
Section 4 we then provide a brief introduction to Cellular 
Automata, their different types and modelling use cases, and in 
Section 5 we describe how they can be used as programming 
tasks in various instructional contexts. We discuss previous 
work related to this in Section 2 and in Section 6 we present a 
study on the use of Cellular Automata programming as an 
exercise task in the context of a MOOC on Test Driven 
Development using JUnit. We also discuss student submissions 
evaluation methodology in this exercise and present an analysis 
on student feedback and reception. We introduce our plans for 
future work and our conclusions in the remaining sections. 

The main contribution of this paper is to explore the various 
types of problems and the varying levels of complexity and 
difficulty, that can be constructed using concepts from Cellular 
Automata. 

II. RELATED WORK 
There has been extensive research in Cellular Automata, and 
the problem of designing programming tasks in computer 
science pedagogy. However, one of the results of our literature 
review was that there has been surprisingly little work 
investigating the utility of Cellular Automata programming 
problems in computer science education. 

Using a series of Cellular Automata modelling examples, 
Lilly shows how these problems can be used creatively to 
address problems in the areas of motivation, learning styles, 
development of modeling skills, and the teaching of technology 
[5]. While the authors do describe the use of Cellular Automata 
in classrooms, they do not discuss it from the perspective of 
computer science pedagogy. 

Weeden employs multiple versions of the Game of Life 
simulation as exercises in parallel programming, including 
exercises using shared or distributed memory as well as 
exercises on how to measure the performance and scaling of a 
parallel application in multicore and many-core environments 
in [16]. Mache and Karavanic describe their use of the Game of 
Life as an exercise in teaching parallelism by asking students to 
speed up a CPU-only implementation by modifying it to use 
CUDA [17]. Wick employs the Game of Life as a vehicle to 
teach freshman students Command and Visitor, two important 
and widely applicable design patterns, by refactoring the Game 
of Life application [18]. Furthermore, Beniak uses the Game of 
Life to teach principles of game design and game engine 
development with Microsoft XNA [19]. Although each of these 
endeavors explore interesting cases of cellular automata 
problems used in computer science education, we do not find 
any holistic discussion on the possibilities in using cellular 
automata for programming tasks. 

III. PROGRAMMING TASKS 
While course lectures impart theoretical knowledge to 

students, programming exercises and tasks set in the course 
have the bonus of complementing the lectures by imparting 
practical knowledge to students. They help students in gaining 
a deeper understanding of the subject and in enabling them to 
apply their knowledge in new situations [4]. 

Guzdial and Soloway propose that this is achieved best by 
applying tasks in the realm of media. They claim that the 
current generation1 of students enjoys learning about array 
manipulation better if the example results in producing sound 
more than if the task requires sorting student IDs or doing 
linear searches for employee names [4]. This calls for better 
use of current technology in pedagogy, where more immersive 
experiential learning can now be easily created by including 
manipulation of sound, graphics, and videos in problem 
contexts.  

Feldman and Zelenski suggest that the tasks that are suited 
best, are those that result in programs that students want to 
write for the reason that they enjoy running them themselves. 
Apart from requiring a strong audio-visual component and a 
high degree of interactivity, they believe that the end result of 
an assignment must be worth the time and effort required to 
achieve it, because when students see the end result of a 
programming assignment as something especially impressive, 
useful, or fun—a program they would like to have for 
themselves—they will approach the project with a heightened 
sense of interest and motivation. Also, writing a programs that 
can be presented with pride to relatives and friends, 
significantly increase a beginning programmers sense of 
accomplishment. [1] 

An obvious class of problems that fits the above 
requirements very well are those of game programming. Very 
often, the students say that gaming is what got them interested 
in computers and regardless of where they end up in their 
careers, many start off with a desire to become game designers. 
The fun factor in games is what sets tasks in this context apart 
from the majority of problems assigned. Next to this, games 
can also hold the potential for integration of almost all of the 
concepts and techniques taught in a typical CS degree program 
[3].  

Although the Game of Life and other Cellular Automata are 
not games in the conventional sense, they are found to be 
equally engaging. There are typically no players, and the game 
is generally not about winning or losing, but is typically used 
as a simulation of another system, that runs according to some 
specified rules. Thus, they combine the benefits of gaming with 
the benefits and challenges of mathematical exercises. 

IV. CELLULAR AUTOMATA 
A cellular automaton is a mathematical model which has 

been widely studied in the simulation of various physical, 
chemical and biological systems. They usually consist of a 
configuration of “cells” which represent elements of the system 
being modeled, each of which can be said to be in one of a set 
of finite number of states. The configuration of these cells can 
be a single row of cells as in one-dimensional or elementary 
cellular automata, a grid as in two-dimensional cellular 
automata, blocks placed in three-dimensional space as in three-
dimensional cellular automata or other regular structures such 
as a grid of hexagonal cells, etc. Each cell has a defined 
neighborhood, generally depending on the shape and 

                                                             
1 We dare to suggest that previous generations of students might have 
preferred that as well. Nowadays however, the improvements in technology 
easily allow to do that. 



configuration of the cells. The cell itself may or may not be 
included in the neighborhood. If the cells are in a row, a cell 
has two neighbors—left and right. If the cells are in a 
hexagonal grid, a cell has six neighbors. The cells that are 
located on the margins may have their outer neighbors either 
defined as dead or as the cells that correspondingly lie on the 
opposite end of the configuration. The cellular automaton starts 
with an initial combination of states of its cells and evolves 
following a transition function (a set of rules) that define the 
next states of the cells depending on the current states of their 
neighbors. The definition of neighbor and the transition 
function can vary and be complex depending on the system 
being modeled. 

 
Fig. 1. Cellular-Automata-like patterns on a shell. (Image: courtesy of 
fdecomite (flickr) CC-BY-2.0) 

For example, the cellular automaton could be modeling 
microbial growth, where each cell represents a microbe cell 
which can be alive or dead, and the rules by which it evolves 
could be that it survives or is born if there are four or more live 
adjacent cells, otherwise it dies. The previously mentioned 
Game of Life is modeled similar to this. 

Also, a simple two-dimensional Cellular Automaton can 
model growth of crystals or patterns in snowflakes or on shells 
as shown in Figure 1. These sequences of transitions are both 
mathematically interesting as well as aesthetically pleasing 
when displayed using colors to represent states of the cell [6]. 

Types of Cellular Automata vary widely in their complexity 
and modelling ability. While some models can only be used to 
express a basic idea of a phenomenon, others are accurate 
enough to be used for prediction. Stephen Wolfram describes 
this in [25] as:    

"Cellular automata are sufficiently simple to allow detailed 
mathematical analysis, yet sufficiently complex to exhibit a 
wide variety of complicated phenomena." 

Even simple Cellular Automata, such as the Game of Life, 
are computationally universal, meaning that it is able to 
compute/model anything computable [12, 24]. From the spots 
on a leopard to the design of a snowflake to the structure of the 
human brain, Wolfram is confident that there is a cellular 

automaton that encodes the design of each [10]. This nature of 
complex phenomenon emerging from simple systems in 
Cellular Automata [34], has instigated several scholars to 
consider the question of whether the underlying model of the 
universe is a cellular automata populated by digital particles 
[35, 36]. In the usage of Cellular Automata concepts for 
programming problems, this variety gives us the ability to 
tweak difficulty and complexity to suit our needs, to weave 
interesting concepts together to make an engaging experience 
for the problem solver, and at the same time stay relevant to 
topics in Computer Science curriculum. 

V. RELEVANCE OF CELLULAR AUTOMATA IN 
PROGRAMMING TASKS 

Jon Conway popularized cellular automata through The 
Game of Life [12], and Martin Gardner made them reach the 
public through his columns in Scientific American [7, 8] and 
his puzzle collection books [9]. Since then, a great number of 
professional mathematicians, as well as amateurs have 
contributed to an understanding of the game of life [12, 13, 14, 
15], as well as Cellular Automata [20, 21, 22, 23]. Due to their 
engaging and narrative nature they have also been adopted 
widely to teach programming concepts.  

Apart from their popularity and engaging nature, the most 
important feature of Cellular Automata problems is the fine 
grain control they provide to the teacher, in being able to tweak 
the difficulty of problems by making incremental 
enhancements to the problem design. For example, if the 
problems required to program an Elementary Cellular 
Automaton following a specific rule, the next difficult problem 
could require the programming of an Elementary Cellular 
Automaton using only one array, thus imparting list processing 
skills to problems solvers. The next addition could be that a 
general Elementary Cellular Automata generator has to be 
coded, taking the rule number (a naming convention that maps 
to a unique transition function) as parameter. The following 
task could then be to code the Game of Life or any other two-
dimensional cellular Automaton using two dimensional arrays 
which can be scaled then to 3 dimensions, etc. Interesting 
variations that stimulate one's visualizing ability, could require 
the Cellular Automaton to wrap around at its edges to resemble 
a Torus or only to wrap around on the sides as a Mobius strip. 
For more algorithmic variety and difficulty ranges, problems 
could require cells of other, non-rectangular shapes such as 
hexagons; or define unidirectional neighbors or have other such 
complex definitions of neighborhood.  

To include probability concepts, the task can be to design 
stochastic cellular automata where the transition rules are 
probabilistic rather than definite (i.e. instead of stating that the 
cell would be dead in the next state, we say the cell has 80% 
chance of dying). The states of the cells could be continuous 
rather than discrete as in Continuous Cellular Automata, which 
tends to model many Finite Element Analysis implementations 
[37]. Furthermore, the automaton can be required to have a 
continuum of locations as in Continuous Spatial Automata or 
have time as a continuous variable where the state evolves 
according to differential equations, thus integrating important 
concepts from Calculus.  



The second most important feature is that they provide 
teachers with the ability to easily integrate a wide variety of 
programming concepts into the problem. The simpler variants 
of Elementary Cellular Automata suit best in the procedural 
programming context. To teach the concepts of Object 
Oriented Programming (OOP), variations from the simpler 
cellular automata can be employed. These variations might 
range from requiring the cells to be movable within the 
universe of the cellular automaton, to requiring the possibility 
to nest cells in another cell, thus enabling the student to model 
an entire ecosystem.  

Due to its parallelizability, the game can also be coded in 
Functional Programming paradigms which are most well suited 
for parallel programming. 

The variety in the spectrum of Cellular Automata problems 
recommends them to motivate students. Particularly, visual 
learners are attracted by the created patterns and encouraged to 
develop their modeling skills [5]. They are considered to be 
useful for the development of curricula to teach certain 
computer technologies [5]. Problems of varying depth can be 
employed to expose different approaches to solve a task. The 
arising difficulties can be employed as feedback to improve the 
teaching material. 

Recent investigations by Stephen Wolfram [11] on cellular 
automata have put forth multiple thought provoking questions 
on the nature of our universe, on computability and 
computational irreducibility, and on the epistemology of 
sciences. His extensive research in these areas have exposed 
important unanswered question related to theoretical computer 
science, logic, Artificial Intelligence, Mathematics and 
Philosophy. Deep questions such as these can generate 
sustained interest among some students that may lead them 
eventually to take up a career in Computer Science research. 

 

   
Fig. 2. Age distribution according to user survey.  

 

VI. CASE STUDY (USE OF RULE 54 ELEMENTARY 
CELLULAR AUTOMATA PROGRAMMING TASK IN TEST DRIVEN 

DEVELOPMENT USING JUNIT MOOC) 
In the following we will discuss the findings of a case study 

that we conducted during our MOOC “Introduction to Test 
Driven Development in Java and JUnit.” The course was 
designed as a two-week workshop on the basics of Test-driven 

Development. The target group were participants with basic 
Java knowledge. About half of the participants had also 
participated in the previous Java programming course that we 
had offered a year earlier. The majority of the participants, 
considered themselves to have good to excellent knowledge in 
programming. A couple of questions that we have asked to 
double-check these self-evaluations seem to confirm this. An 
in-depth examination of this survey will follow in a future 
paper. 

The course had 2799 registered participants2. 950 of these 
never showed up3. 283 participants received a Record of 
Achievement. 322 of the participants answered a couple of 
questions in our course end survey. The chart below shows the 
courses age distribution. According to our experience in 
previous courses, these numbers tend to be rather 
representative.  

Most of the participants were male, and not surprising, as 
the course was offered in German, lived in Germany. The 
overall feedback on course quality, course length, etc. was 
good to very good. The difficulty of the course was considered 
medium (3 on a 5 point Likert scale ranging from 1-very easy 
to 5-very difficult.)  

We picked the Rule54 Automaton among the one-
dimensional automata rules, as it was the best fit for our 
requirement of being easy to comprehend and, therefore, being 
suitable for beginners. Any other rule would have been 
possible as well, coming along with its own advantages or 
disadvantages. 

A. Rule 54 CA 
A rather simple form of cellular automaton is the one-

dimensional (elementary) cellular automaton, which consists of 
a single row of cells. Each cell starts with a given initial state 
and evolves depending on the states of its left and right 
neighbor. 

In our course on Test-driven Development and JUnit, we 
provided an exercise based on an Elementary Cellular 
Automaton called Rule 54. The participants were asked to 
implement and test this Cellular Automaton, which is 
constituted by the following set of rules: 

1. If the cell and both neighbors are dead in the current 
state, then the cell is dead in the next state. 

2. If the cell and both neighbors are currently alive, then the 
cell is dead in the next state. 

3. If the cell and one of its neighbors are currently alive, 
then the cell is dead in the next state. 

4. If the cell is alive and both neighbors are dead in the 
current state, then the cell is alive in the next state. 

5. If the cell is dead and at least one of the neighbors is 
alive, then the cell is alive in the next state. 

                                                             
2 We always employ the number of enrollments at course middle as the basis 
for our calculations, as these are the participants who still have a realistic 
chance on finishing the course with a certificate 
3 These are what we call no-shows. Platform users that register for a course 
but in the end do not ever visit a single item of the course. 



6. The cells beyond the Cellular Automaton’s boundaries 
are considered to be dead. 

 
All mentioned rules can be represented as combinations of 3 
binary numbers (In the following, they are sorted by the binary 
value represented. 0 represents dead and 1 represents alive). 

 

 
Fig. 3. Rule 54 Cellular Automaton. Each row represents one iteration at a 
time.  

When the output shown in Figure 3 is written horizontally, 
it denotes a binary number, which is the number 54 in decimal 
representation. Hence, this automaton is named Rule 54. The 
rules and an exemplary evolution of a row with only one cell 
alive in the center of the row are shown in Figure 3. 

Cellular Automata based on building rules, such as in the 
example above, also give the teacher the ability to scale the 
problem complexity in small steps. For example, the first few 
problems for getting started can be to ask the student to 
implement specific rules such as Rule 54 or Rule 30, each 
having their own characteristic properties -- Rule 54 is 
amphicheiral [33], Rule 30 is chaotic [32], Rule 110 has been 
shown to be capable of universal computation [30, 31]. The 
usual algorithms employed to program a cellular automaton, 
typically use iteration or recursion on discrete time units, such 
as the number of days of evolution undergone. More advanced 
participants may even deduce an elegant closed form solution 
for certain problems such as Rule 54, in which the decimal 
value of the nth iteration is given in closed form by: 

 

𝑎 𝑛 = 	

7
15
	 4)*+ − 1 	for	𝑛	odd		

1
15
	 4)*1 − 1 	for	𝑛	even

 

 

A follow up task for the students might be to code a general 
elementary cellular automaton, which takes the rule number as 
an input. Finally, the students can be asked to add an 

interactive display. Thus, the teacher is provided with a 
plethora of settings to tweak the complexity of the problem 
depending on the need of the situation. 

In our course we employed the problem of Rule 54, which 
allowed us to test varied classes of test cases. These classes 
ranged from test cases that check the implementation on the  

main paths of the code to those that check the numerous 
edge paths, such as single celled or double celled automata. 
The original design of the problem included an additional 
feature, which allowed the Cellular Automaton to be in a 
continuum having the cells that are bordering the automatons 
limits wrap around and lie next to each other instead of having 
the space beyond the limits of the automaton being populated 
by dead cells. This feature required a larger number of unit test 
cases to check the additional paths of Cellular Automaton 
wrapping, but since the course was targeted towards a novice 
audience and was supposed to run only for two weeks, we 
decided not to include it in the final problem statement.  

 

 
Fig. 4. Next to the part that is visible to the participants, the assignment 
contains a hidden part, which mainly consists of two types of tests: 1. tests 
that test the behaviour of the participants’ implementation and 2. tests that test 
if the tests that have been provided by the participants test the correct things. 
They have to catch a certain amount of errors and have to pass against the 
correct implementation. The files that have been provided to the students were 
an abstract class that defined the required methods to be implemented (blue 
border), a starter class (nothing needed to be done here-green border), and the 
scaffolds for a test class and the according implementation class (red border). 
The red-bordered classes had to be completed by the students.  

 

B. Testing  and Assessment 
In the assessment of student submitted programs, there has 

been a wide use of dynamic testing using a battery of unit test 
cases that characterize and differentiate the correct solutions 
from the wrong ones [26, 27, 28, 29]. Dynamic testing provides 
precision in measuring correctness, but is not comprehensive. 
To come up with an exhaustive set of test cases that catches 



every possible mistake that a student can make is infeasible. 
Hence, there is an inherent necessity for static code analysis to 
assess students’ solutions comprehensively. 

In our JUnit course, we encouraged the participants to 
follow the test first approach.  According to this approach, tests 
are written first, then the actual solution is implemented. The 
participants iteratively improved their solutions as well as their 
tests, until they finally submitted their work for assessment. For 
the evaluation of these submissions we assessed their solution 
as well as their tests. To evaluate their solution, we used a 
battery of test cases that solely check the correctness. We are 
currently working on a more comprehensive assessment 
strategy by means of static code analysis. 

Our online assessment platform is configured to allow the 
solution as implemented by the participants to be run for a 
maximum time of 20 seconds. The better implementations, 
thus, had plenty of time to succeed on all our assessment tests. 
As a side effect the timeout acts as a filtering mechanism to 
weed out incorrect solutions.  

When the participant clicks on the “Score” button, our test 
suite is run against the participant’s solution of the problem and 
then our tests are run against their tests as shown in Figure 4. 

Dynamic Analysis of JUnit tests using Mutation testing  

To provide thorough coverage for all possibilities, the 
Cellular Automata exercise would have required a large 
amount of test cases. To keep the workload for the teaching 
team in the zone of feasibility, we turned to the use of mutation 
testing, a common technique used in the software industry to 
evaluate the quality of software tests. The participants’ test 
submissions were analyzed on the two dimensions of 
correctness and thoroughness. Participants’ test solutions were 
not only required to pass a minimum number of tests against 
our correct “gold” solution, but it was also required that at least 
one or more of their test cases failed against a certain minimum 
number of our intentionally incorrect/mutated “coal” solutions. 
We required students to pass only a minimum number of test 
cases against gold and catch only a minimum number of coals 
as opposed to 100 percent or complete correctness and 
thoroughness in order to relax requirements as the course was 
targeted towards novices. Students were informed that their 
tests would be tested against a correct implementation as well 
as multiple other incorrect implementations. Code stubs, which 
included an instantiated constructor of the classes of gold or 
coal solutions, were provided to the students with appropriate 
directions on how to use them. 

  

Fig. 5. The average time spent on the assignment by the participants was 
about one and a half hours. In comparison, we, the members of the teaching 
team spent a total of about 10 hours on the platform alone to create, maintain 
and troubleshoot the assignment. Additionally, we spent at least as much time 
that has not been recorded on designing and implementing the assignment.  

 

C. Feedack and reception 
We have not done a formal evaluation on the participants’ 

perception of the Cellular Automata assignment. The 
discussions in the forum, however, ranged from “the exercise 
was way too easy, it should have required us to write more test 
cases” to a couple of very detailed discussions that showed that 
the involved participants had problems with the task but were 
eager to solve it.  

We have, however, some data on the way the users 
interacted with the task. 364 course participants started the 
Cellular Automata assignment, which was one of the main 
alternatives to earn the Record of Achievement. We recorded 
26968 intermediate submissions. 279 participants finally 
submitted the assignment. The average score for the 
assignment was about 90%. The time that has been spent by the 
participants on the assignment ranged from about 1 minute to 
about 10 hours, counting only those that at least solved it to 
some extent. One minute to solve the exercise seems to be 
hardly impossible with “legal” means. It was rather difficult, 
although not impossible to download the code and work on it 
offline as it contained a couple of hidden files used for testing. 
We, therefore, cannot eliminate the possibility that some of the 
very fast users have been cheating. Another explanation would 
be that they have teamed up to work on one of the participants’ 
assignment and then just had to copy/paste and resubmit the 
solution for the other user. As we always encouraged the 
participants to collaborate, this would be a perfectly acceptable 
approach. The number of candidates is low anyhow. No more 
than about 5-6 participants finished the assignment in less than 
5 minutes. 

VII. FUTURE WORK 
     As noticed in the previous section we cannot yet eliminate 
the possibility that some of the users that have solved this 
problem very fast, e.g. in less than 5 minutes might have been 
cheating one way or the other. It would be worth to thoroughly 
examine the 8-10 intermediate submissions of these 
participants to find further evidence if they have been tricking 
the system or not.   
    The most important insight from this experiment, however, 
is that creating such exercises puts a very high workload on 
the teaching teams. Therefore, in the long run, it is 
unavoidable to shift the grading paradigm from dynamic 
testing, e.g. by providing unit tests, to static code analysis. We 
still are convinced that dynamic tests are important to some 
extent, but they cannot be the single source to determine the 
participants grade.  
    Another finding from this experiment is that, as creating 
these exercises is so time consuming, a programming-
exercise-repository that allows to share programming 
exercises between various code evaluation tools (and teaching 



teams/educators) is an important issue. We have already taken 
first steps in both directions.    

VIII.  CONCLUSION 
We have shown that Cellular Automata can be employed as 

practical programming exercises, suitable for novices as well as 
experts. They are a rewarding basis for developing interesting 
and motivating tasks. To design and to implement them, 
however, puts a high workload on the shoulders of teaching 
teams. The same applies for other interesting programming 
tasks as well. This is particularly true, when they are graded 
solely by means of dynamic testing. Alternative sources to 
determine a grade for the code that has been provided by a 
student, therefore, should be further investigated. Static code 
analysis is a promising candidate. Another approach is to 
combine automated code assessment with peer assessment. 
Next to simplifying the process to create programming 
exercises, it is necessary to provide the possibility to exchange 
and share programming exercises with other educators, to 
allow reuse and evolution of programming tasks. 
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