
published as: Thomas Staubitz, Ralf Teusner, Nishanth Prakash, and Christoph Meinel: Cellular
Automata as Basis for Programming Exercises in a MOOC on Testdriven Development, IEEE
International Conference on Teaching, Assessment, and Learning for Engineering (TALE2016), 7.-
9. 12.2016, Bangkok 2016

Cellular Automata as Basis for Programming

Exercises in a MOOC on Testdriven Development
Thomas Staubitz, Ralf Teusner, Christoph Meinel

Hasso Plattner Institute,
University of Potsdam

Potsdam, Germany
{firstname.lastname}@hpi.de

Nishanth Prakash
Department of Computer Science,

Brown University
Providence, RI, USA

nishanth_prakash@brown.edu

Abstract—Programming tasks are an important part of
teaching computer programming as they foster students to
develop essential programming skills and techniques through
practice. The design of educational problems plays a crucial role
in the extent to which the experiential knowledge is imparted to
the learner both in terms of quality and quantity. Badly designed
tasks have been known to put-off students from practicing
programming. Hence, there is a need for carefully designed
problems. Cellular Automata programming lends itself as a very
suitable candidate among problems designed for programming
practice. In this paper we describe how various types of problems
can be designed using concepts from Cellular Automata and
discuss the features which make them good practice problems
with regard to instructional pedagogy. We also present a case
study on a Cellular Automata programming exercise used in a
MOOC on Test Driven Development using JUnit, and discuss the
automated evaluation of code submissions and the feedback
about the reception of this exercise by participants in this course.

Keywords—programming tasks; unit testing; test driven
development; MOOC; automated grading

I. INTRODUCTION
The well-known Game of Life [7], a John Conway creation,

has withstood the test of time among popular programming
problems for good reason. It exercises several useful
programming concepts (like the use of random numbers, 2-D
arrays, functions, loops and recursion), can be extended to
include advanced programming concepts and methodology
(such as Object Oriented Programming, Design Patterns, Test
Driven Development, UI design, Interactive Programming,
etc.) and can be scaled to varying levels of difficulty with ease.
While some problems in Cellular Automata and Game of Life,
are well within the reach of programming novices, others are
difficult enough to be considered for advanced programmers in

specialized areas (such as parallel programming or ecology
modelling, etc.). Most importantly it is fun and engaging to
program Cellular Automata and watch their transitions. In this
paper, we explore the suitability of Cellular Automata
challenges for developing a wide variety of programming
assignments, appropriate for audiences ranging from novices to
experts.

Programming ability basically rests on two pillars. One is
formed by the theoretical foundations of knowledge about
computers, programming languages, tools and formal methods
(i.e. knowledge which is of a declarative nature, for example—
being able to state how a “for” loop works). The other is the
ability to apply this knowledge hands-on.

The famous adage “I hear and I forget. I see and I
remember. I do and I understand”, as succinctly put by
Confucius, is very much relevant even to this day in pedagogy.
But while much of the instructional content focuses on
theoretical aspects of computer programming, it is
programming assignments and exercises that play a major role
in helping students learn programming skills and techniques
through practice.

Providing students with quality homework, exercises, and
assignments is integral to the success of any course.
Particularly so, in introductory courses where the major share
of student’s learnings comes from [1]. Often however, the tasks
set for practice are not considered as a vehicle that can direct
learning behaviors in students [2]. To add to this, most
programming assignments are what most students would
classify as boring: mathematical problems (except games),
sorting, string manipulation and others all succeed in helping
students to learn the concepts, but few are met with any real
enthusiasm and fewer still inspire true creativity [3].

In Section 3 we begin with a study of interesting
programming tasks that have been previously used in
classroom courses, MOOCs and other instructional settings. In
Section 4 we then provide a brief introduction to Cellular
Automata, their different types and modelling use cases, and in
Section 5 we describe how they can be used as programming
tasks in various instructional contexts. We discuss previous
work related to this in Section 2 and in Section 6 we present a
study on the use of Cellular Automata programming as an
exercise task in the context of a MOOC on Test Driven
Development using JUnit. We also discuss student submissions
evaluation methodology in this exercise and present an analysis
on student feedback and reception. We introduce our plans for
future work and our conclusions in the remaining sections.

The main contribution of this paper is to explore the various
types of problems and the varying levels of complexity and
difficulty, that can be constructed using concepts from Cellular
Automata.

II. RELATED WORK
There has been extensive research in Cellular Automata, and
the problem of designing programming tasks in computer
science pedagogy. However, one of the results of our literature
review was that there has been surprisingly little work
investigating the utility of Cellular Automata programming
problems in computer science education.

Using a series of Cellular Automata modelling examples,
Lilly shows how these problems can be used creatively to
address problems in the areas of motivation, learning styles,
development of modeling skills, and the teaching of technology
[5]. While the authors do describe the use of Cellular Automata
in classrooms, they do not discuss it from the perspective of
computer science pedagogy.

Weeden employs multiple versions of the Game of Life
simulation as exercises in parallel programming, including
exercises using shared or distributed memory as well as
exercises on how to measure the performance and scaling of a
parallel application in multicore and many-core environments
in [16]. Mache and Karavanic describe their use of the Game of
Life as an exercise in teaching parallelism by asking students to
speed up a CPU-only implementation by modifying it to use
CUDA [17]. Wick employs the Game of Life as a vehicle to
teach freshman students Command and Visitor, two important
and widely applicable design patterns, by refactoring the Game
of Life application [18]. Furthermore, Beniak uses the Game of
Life to teach principles of game design and game engine
development with Microsoft XNA [19]. Although each of these
endeavors explore interesting cases of cellular automata
problems used in computer science education, we do not find
any holistic discussion on the possibilities in using cellular
automata for programming tasks.

III. PROGRAMMING TASKS
While course lectures impart theoretical knowledge to

students, programming exercises and tasks set in the course
have the bonus of complementing the lectures by imparting
practical knowledge to students. They help students in gaining
a deeper understanding of the subject and in enabling them to
apply their knowledge in new situations [4].

Guzdial and Soloway propose that this is achieved best by
applying tasks in the realm of media. They claim that the
current generation1 of students enjoys learning about array
manipulation better if the example results in producing sound
more than if the task requires sorting student IDs or doing
linear searches for employee names [4]. This calls for better
use of current technology in pedagogy, where more immersive
experiential learning can now be easily created by including
manipulation of sound, graphics, and videos in problem
contexts.

Feldman and Zelenski suggest that the tasks that are suited
best, are those that result in programs that students want to
write for the reason that they enjoy running them themselves.
Apart from requiring a strong audio-visual component and a
high degree of interactivity, they believe that the end result of
an assignment must be worth the time and effort required to
achieve it, because when students see the end result of a
programming assignment as something especially impressive,
useful, or fun—a program they would like to have for
themselves—they will approach the project with a heightened
sense of interest and motivation. Also, writing a programs that
can be presented with pride to relatives and friends,
significantly increase a beginning programmers sense of
accomplishment. [1]

An obvious class of problems that fits the above
requirements very well are those of game programming. Very
often, the students say that gaming is what got them interested
in computers and regardless of where they end up in their
careers, many start off with a desire to become game designers.
The fun factor in games is what sets tasks in this context apart
from the majority of problems assigned. Next to this, games
can also hold the potential for integration of almost all of the
concepts and techniques taught in a typical CS degree program
[3].

Although the Game of Life and other Cellular Automata are
not games in the conventional sense, they are found to be
equally engaging. There are typically no players, and the game
is generally not about winning or losing, but is typically used
as a simulation of another system, that runs according to some
specified rules. Thus, they combine the benefits of gaming with
the benefits and challenges of mathematical exercises.

IV. CELLULAR AUTOMATA
A cellular automaton is a mathematical model which has

been widely studied in the simulation of various physical,
chemical and biological systems. They usually consist of a
configuration of “cells” which represent elements of the system
being modeled, each of which can be said to be in one of a set
of finite number of states. The configuration of these cells can
be a single row of cells as in one-dimensional or elementary
cellular automata, a grid as in two-dimensional cellular
automata, blocks placed in three-dimensional space as in three-
dimensional cellular automata or other regular structures such
as a grid of hexagonal cells, etc. Each cell has a defined
neighborhood, generally depending on the shape and

1 We dare to suggest that previous generations of students might have
preferred that as well. Nowadays however, the improvements in technology
easily allow to do that.

configuration of the cells. The cell itself may or may not be
included in the neighborhood. If the cells are in a row, a cell
has two neighbors—left and right. If the cells are in a
hexagonal grid, a cell has six neighbors. The cells that are
located on the margins may have their outer neighbors either
defined as dead or as the cells that correspondingly lie on the
opposite end of the configuration. The cellular automaton starts
with an initial combination of states of its cells and evolves
following a transition function (a set of rules) that define the
next states of the cells depending on the current states of their
neighbors. The definition of neighbor and the transition
function can vary and be complex depending on the system
being modeled.

Fig. 1. Cellular-Automata-like patterns on a shell. (Image: courtesy of
fdecomite (flickr) CC-BY-2.0)

For example, the cellular automaton could be modeling
microbial growth, where each cell represents a microbe cell
which can be alive or dead, and the rules by which it evolves
could be that it survives or is born if there are four or more live
adjacent cells, otherwise it dies. The previously mentioned
Game of Life is modeled similar to this.

Also, a simple two-dimensional Cellular Automaton can
model growth of crystals or patterns in snowflakes or on shells
as shown in Figure 1. These sequences of transitions are both
mathematically interesting as well as aesthetically pleasing
when displayed using colors to represent states of the cell [6].

Types of Cellular Automata vary widely in their complexity
and modelling ability. While some models can only be used to
express a basic idea of a phenomenon, others are accurate
enough to be used for prediction. Stephen Wolfram describes
this in [25] as:

"Cellular automata are sufficiently simple to allow detailed
mathematical analysis, yet sufficiently complex to exhibit a
wide variety of complicated phenomena."

Even simple Cellular Automata, such as the Game of Life,
are computationally universal, meaning that it is able to
compute/model anything computable [12, 24]. From the spots
on a leopard to the design of a snowflake to the structure of the
human brain, Wolfram is confident that there is a cellular

automaton that encodes the design of each [10]. This nature of
complex phenomenon emerging from simple systems in
Cellular Automata [34], has instigated several scholars to
consider the question of whether the underlying model of the
universe is a cellular automata populated by digital particles
[35, 36]. In the usage of Cellular Automata concepts for
programming problems, this variety gives us the ability to
tweak difficulty and complexity to suit our needs, to weave
interesting concepts together to make an engaging experience
for the problem solver, and at the same time stay relevant to
topics in Computer Science curriculum.

V. RELEVANCE OF CELLULAR AUTOMATA IN
PROGRAMMING TASKS

Jon Conway popularized cellular automata through The
Game of Life [12], and Martin Gardner made them reach the
public through his columns in Scientific American [7, 8] and
his puzzle collection books [9]. Since then, a great number of
professional mathematicians, as well as amateurs have
contributed to an understanding of the game of life [12, 13, 14,
15], as well as Cellular Automata [20, 21, 22, 23]. Due to their
engaging and narrative nature they have also been adopted
widely to teach programming concepts.

Apart from their popularity and engaging nature, the most
important feature of Cellular Automata problems is the fine
grain control they provide to the teacher, in being able to tweak
the difficulty of problems by making incremental
enhancements to the problem design. For example, if the
problems required to program an Elementary Cellular
Automaton following a specific rule, the next difficult problem
could require the programming of an Elementary Cellular
Automaton using only one array, thus imparting list processing
skills to problems solvers. The next addition could be that a
general Elementary Cellular Automata generator has to be
coded, taking the rule number (a naming convention that maps
to a unique transition function) as parameter. The following
task could then be to code the Game of Life or any other two-
dimensional cellular Automaton using two dimensional arrays
which can be scaled then to 3 dimensions, etc. Interesting
variations that stimulate one's visualizing ability, could require
the Cellular Automaton to wrap around at its edges to resemble
a Torus or only to wrap around on the sides as a Mobius strip.
For more algorithmic variety and difficulty ranges, problems
could require cells of other, non-rectangular shapes such as
hexagons; or define unidirectional neighbors or have other such
complex definitions of neighborhood.

To include probability concepts, the task can be to design
stochastic cellular automata where the transition rules are
probabilistic rather than definite (i.e. instead of stating that the
cell would be dead in the next state, we say the cell has 80%
chance of dying). The states of the cells could be continuous
rather than discrete as in Continuous Cellular Automata, which
tends to model many Finite Element Analysis implementations
[37]. Furthermore, the automaton can be required to have a
continuum of locations as in Continuous Spatial Automata or
have time as a continuous variable where the state evolves
according to differential equations, thus integrating important
concepts from Calculus.

The second most important feature is that they provide
teachers with the ability to easily integrate a wide variety of
programming concepts into the problem. The simpler variants
of Elementary Cellular Automata suit best in the procedural
programming context. To teach the concepts of Object
Oriented Programming (OOP), variations from the simpler
cellular automata can be employed. These variations might
range from requiring the cells to be movable within the
universe of the cellular automaton, to requiring the possibility
to nest cells in another cell, thus enabling the student to model
an entire ecosystem.

Due to its parallelizability, the game can also be coded in
Functional Programming paradigms which are most well suited
for parallel programming.

The variety in the spectrum of Cellular Automata problems
recommends them to motivate students. Particularly, visual
learners are attracted by the created patterns and encouraged to
develop their modeling skills [5]. They are considered to be
useful for the development of curricula to teach certain
computer technologies [5]. Problems of varying depth can be
employed to expose different approaches to solve a task. The
arising difficulties can be employed as feedback to improve the
teaching material.

Recent investigations by Stephen Wolfram [11] on cellular
automata have put forth multiple thought provoking questions
on the nature of our universe, on computability and
computational irreducibility, and on the epistemology of
sciences. His extensive research in these areas have exposed
important unanswered question related to theoretical computer
science, logic, Artificial Intelligence, Mathematics and
Philosophy. Deep questions such as these can generate
sustained interest among some students that may lead them
eventually to take up a career in Computer Science research.

Fig. 2. Age distribution according to user survey.

VI. CASE STUDY (USE OF RULE 54 ELEMENTARY
CELLULAR AUTOMATA PROGRAMMING TASK IN TEST DRIVEN

DEVELOPMENT USING JUNIT MOOC)
In the following we will discuss the findings of a case study

that we conducted during our MOOC “Introduction to Test
Driven Development in Java and JUnit.” The course was
designed as a two-week workshop on the basics of Test-driven

Development. The target group were participants with basic
Java knowledge. About half of the participants had also
participated in the previous Java programming course that we
had offered a year earlier. The majority of the participants,
considered themselves to have good to excellent knowledge in
programming. A couple of questions that we have asked to
double-check these self-evaluations seem to confirm this. An
in-depth examination of this survey will follow in a future
paper.

The course had 2799 registered participants2. 950 of these
never showed up3. 283 participants received a Record of
Achievement. 322 of the participants answered a couple of
questions in our course end survey. The chart below shows the
courses age distribution. According to our experience in
previous courses, these numbers tend to be rather
representative.

Most of the participants were male, and not surprising, as
the course was offered in German, lived in Germany. The
overall feedback on course quality, course length, etc. was
good to very good. The difficulty of the course was considered
medium (3 on a 5 point Likert scale ranging from 1-very easy
to 5-very difficult.)

We picked the Rule54 Automaton among the one-
dimensional automata rules, as it was the best fit for our
requirement of being easy to comprehend and, therefore, being
suitable for beginners. Any other rule would have been
possible as well, coming along with its own advantages or
disadvantages.

A. Rule 54 CA
A rather simple form of cellular automaton is the one-

dimensional (elementary) cellular automaton, which consists of
a single row of cells. Each cell starts with a given initial state
and evolves depending on the states of its left and right
neighbor.

In our course on Test-driven Development and JUnit, we
provided an exercise based on an Elementary Cellular
Automaton called Rule 54. The participants were asked to
implement and test this Cellular Automaton, which is
constituted by the following set of rules:

1. If the cell and both neighbors are dead in the current
state, then the cell is dead in the next state.

2. If the cell and both neighbors are currently alive, then the
cell is dead in the next state.

3. If the cell and one of its neighbors are currently alive,
then the cell is dead in the next state.

4. If the cell is alive and both neighbors are dead in the
current state, then the cell is alive in the next state.

5. If the cell is dead and at least one of the neighbors is
alive, then the cell is alive in the next state.

2 We always employ the number of enrollments at course middle as the basis
for our calculations, as these are the participants who still have a realistic
chance on finishing the course with a certificate
3 These are what we call no-shows. Platform users that register for a course
but in the end do not ever visit a single item of the course.

6. The cells beyond the Cellular Automaton’s boundaries
are considered to be dead.

All mentioned rules can be represented as combinations of 3
binary numbers (In the following, they are sorted by the binary
value represented. 0 represents dead and 1 represents alive).

Fig. 3. Rule 54 Cellular Automaton. Each row represents one iteration at a
time.

When the output shown in Figure 3 is written horizontally,
it denotes a binary number, which is the number 54 in decimal
representation. Hence, this automaton is named Rule 54. The
rules and an exemplary evolution of a row with only one cell
alive in the center of the row are shown in Figure 3.

Cellular Automata based on building rules, such as in the
example above, also give the teacher the ability to scale the
problem complexity in small steps. For example, the first few
problems for getting started can be to ask the student to
implement specific rules such as Rule 54 or Rule 30, each
having their own characteristic properties -- Rule 54 is
amphicheiral [33], Rule 30 is chaotic [32], Rule 110 has been
shown to be capable of universal computation [30, 31]. The
usual algorithms employed to program a cellular automaton,
typically use iteration or recursion on discrete time units, such
as the number of days of evolution undergone. More advanced
participants may even deduce an elegant closed form solution
for certain problems such as Rule 54, in which the decimal
value of the nth iteration is given in closed form by:

𝑎 𝑛 = 	

7
15
	 4)*+ − 1 	for	𝑛	odd		

1
15
	 4)*1 − 1 	for	𝑛	even

A follow up task for the students might be to code a general
elementary cellular automaton, which takes the rule number as
an input. Finally, the students can be asked to add an

interactive display. Thus, the teacher is provided with a
plethora of settings to tweak the complexity of the problem
depending on the need of the situation.

In our course we employed the problem of Rule 54, which
allowed us to test varied classes of test cases. These classes
ranged from test cases that check the implementation on the

main paths of the code to those that check the numerous
edge paths, such as single celled or double celled automata.
The original design of the problem included an additional
feature, which allowed the Cellular Automaton to be in a
continuum having the cells that are bordering the automatons
limits wrap around and lie next to each other instead of having
the space beyond the limits of the automaton being populated
by dead cells. This feature required a larger number of unit test
cases to check the additional paths of Cellular Automaton
wrapping, but since the course was targeted towards a novice
audience and was supposed to run only for two weeks, we
decided not to include it in the final problem statement.

Fig. 4. Next to the part that is visible to the participants, the assignment
contains a hidden part, which mainly consists of two types of tests: 1. tests
that test the behaviour of the participants’ implementation and 2. tests that test
if the tests that have been provided by the participants test the correct things.
They have to catch a certain amount of errors and have to pass against the
correct implementation. The files that have been provided to the students were
an abstract class that defined the required methods to be implemented (blue
border), a starter class (nothing needed to be done here-green border), and the
scaffolds for a test class and the according implementation class (red border).
The red-bordered classes had to be completed by the students.

B. Testing and Assessment
In the assessment of student submitted programs, there has

been a wide use of dynamic testing using a battery of unit test
cases that characterize and differentiate the correct solutions
from the wrong ones [26, 27, 28, 29]. Dynamic testing provides
precision in measuring correctness, but is not comprehensive.
To come up with an exhaustive set of test cases that catches

every possible mistake that a student can make is infeasible.
Hence, there is an inherent necessity for static code analysis to
assess students’ solutions comprehensively.

In our JUnit course, we encouraged the participants to
follow the test first approach. According to this approach, tests
are written first, then the actual solution is implemented. The
participants iteratively improved their solutions as well as their
tests, until they finally submitted their work for assessment. For
the evaluation of these submissions we assessed their solution
as well as their tests. To evaluate their solution, we used a
battery of test cases that solely check the correctness. We are
currently working on a more comprehensive assessment
strategy by means of static code analysis.

Our online assessment platform is configured to allow the
solution as implemented by the participants to be run for a
maximum time of 20 seconds. The better implementations,
thus, had plenty of time to succeed on all our assessment tests.
As a side effect the timeout acts as a filtering mechanism to
weed out incorrect solutions.

When the participant clicks on the “Score” button, our test
suite is run against the participant’s solution of the problem and
then our tests are run against their tests as shown in Figure 4.

Dynamic Analysis of JUnit tests using Mutation testing

To provide thorough coverage for all possibilities, the
Cellular Automata exercise would have required a large
amount of test cases. To keep the workload for the teaching
team in the zone of feasibility, we turned to the use of mutation
testing, a common technique used in the software industry to
evaluate the quality of software tests. The participants’ test
submissions were analyzed on the two dimensions of
correctness and thoroughness. Participants’ test solutions were
not only required to pass a minimum number of tests against
our correct “gold” solution, but it was also required that at least
one or more of their test cases failed against a certain minimum
number of our intentionally incorrect/mutated “coal” solutions.
We required students to pass only a minimum number of test
cases against gold and catch only a minimum number of coals
as opposed to 100 percent or complete correctness and
thoroughness in order to relax requirements as the course was
targeted towards novices. Students were informed that their
tests would be tested against a correct implementation as well
as multiple other incorrect implementations. Code stubs, which
included an instantiated constructor of the classes of gold or
coal solutions, were provided to the students with appropriate
directions on how to use them.

Fig. 5. The average time spent on the assignment by the participants was
about one and a half hours. In comparison, we, the members of the teaching
team spent a total of about 10 hours on the platform alone to create, maintain
and troubleshoot the assignment. Additionally, we spent at least as much time
that has not been recorded on designing and implementing the assignment.

C. Feedack and reception
We have not done a formal evaluation on the participants’

perception of the Cellular Automata assignment. The
discussions in the forum, however, ranged from “the exercise
was way too easy, it should have required us to write more test
cases” to a couple of very detailed discussions that showed that
the involved participants had problems with the task but were
eager to solve it.

We have, however, some data on the way the users
interacted with the task. 364 course participants started the
Cellular Automata assignment, which was one of the main
alternatives to earn the Record of Achievement. We recorded
26968 intermediate submissions. 279 participants finally
submitted the assignment. The average score for the
assignment was about 90%. The time that has been spent by the
participants on the assignment ranged from about 1 minute to
about 10 hours, counting only those that at least solved it to
some extent. One minute to solve the exercise seems to be
hardly impossible with “legal” means. It was rather difficult,
although not impossible to download the code and work on it
offline as it contained a couple of hidden files used for testing.
We, therefore, cannot eliminate the possibility that some of the
very fast users have been cheating. Another explanation would
be that they have teamed up to work on one of the participants’
assignment and then just had to copy/paste and resubmit the
solution for the other user. As we always encouraged the
participants to collaborate, this would be a perfectly acceptable
approach. The number of candidates is low anyhow. No more
than about 5-6 participants finished the assignment in less than
5 minutes.

VII. FUTURE WORK
 As noticed in the previous section we cannot yet eliminate
the possibility that some of the users that have solved this
problem very fast, e.g. in less than 5 minutes might have been
cheating one way or the other. It would be worth to thoroughly
examine the 8-10 intermediate submissions of these
participants to find further evidence if they have been tricking
the system or not.
 The most important insight from this experiment, however,
is that creating such exercises puts a very high workload on
the teaching teams. Therefore, in the long run, it is
unavoidable to shift the grading paradigm from dynamic
testing, e.g. by providing unit tests, to static code analysis. We
still are convinced that dynamic tests are important to some
extent, but they cannot be the single source to determine the
participants grade.
 Another finding from this experiment is that, as creating
these exercises is so time consuming, a programming-
exercise-repository that allows to share programming
exercises between various code evaluation tools (and teaching

teams/educators) is an important issue. We have already taken
first steps in both directions.

VIII. CONCLUSION
We have shown that Cellular Automata can be employed as

practical programming exercises, suitable for novices as well as
experts. They are a rewarding basis for developing interesting
and motivating tasks. To design and to implement them,
however, puts a high workload on the shoulders of teaching
teams. The same applies for other interesting programming
tasks as well. This is particularly true, when they are graded
solely by means of dynamic testing. Alternative sources to
determine a grade for the code that has been provided by a
student, therefore, should be further investigated. Static code
analysis is a promising candidate. Another approach is to
combine automated code assessment with peer assessment.
Next to simplifying the process to create programming
exercises, it is necessary to provide the possibility to exchange
and share programming exercises with other educators, to
allow reuse and evolution of programming tasks.

REFERENCES
[1] T. Feldman and J. Zelenski, “The quest for excellence in designing

cs1/cs2 assignments,” in ACM SIGCSE Bulletin, ACM, vol. 28, 1996,
pp. 319–323.

[2] A. Carbone, J. Hurst, I. Mitchell, and D. Gunstone, “Principles for
designing programming exercises to minimise poor learning behaviours
in students,” in Proceedings of the Australasian conference on
Computing education, ACM, 2000, pp. 26–33.  

[3] K. Becker, “Teaching with games: The minesweeper and asteroids
experience,” Journal of Computing Sciences in Colleges, vol. 17, no. 2,
pp. 23–33, 2001.  

[4] M. Guzdial and E. Soloway, “Teaching the nintendo generation to
program,” Communications of the ACM, vol. 45, no. 4, pp. 17–21, 2002.

[5] H. A. Lilly, “The use of cellular automata in the classroom,” in
Proceedings of the 1995 ACM/IEEE conference on Supercomputing,
ACM, 1995, p. 16.  

[6] R. A. Bosch, “Integer programming and conway’s game of life,” SIAM
review, vol. 41, no. 3, pp. 594–604, 1999.  

[7] M. Gardner, “The fantastic combinations of john conways new solitaire
games,” Mathematical Games, 1970.  

[8] M. Gardner, “Cellular automata, self-reproduction, garden of eden and
game life,” Scientific American, vol. 224, no. 2, p. 112, 1971.  

[9] M. Gardner, Wheels, life, and other mathematical amusements. WH
Freeman New York, 1983.  

[10] S. G. Krantz, The proof is in the pudding: The changing nature of
mathematical proof. Springer Science & Business Media, 2011.  

[11] S. Wolfram, A new kind of science. Wolfram media Cham- paign, 2002,
vol. 5.  

[12] E. a. Berlekamp, Winning Ways for Your Mathematical Plays, Volume
2: Games in Particular. London, England: Academic Press, 1982, vol. 2.

[13] P. Callahan, Creating life: Conway’s life miscellany web page,
http://www.radicaleye.com/lifepage/, [Online; accessed 18-09-2016].

[14] W. Poundstone, The recursive universe: Cosmic complexity and the
limits of scientific knowledge. Courier Corporation, 2013.  

[15] R. Wainwright, “Lifeline-a quaterly newsletter for enthusiasts of john
conway’s game of life,” Issues, vol. 1, 1971.  

[16] A. Weeden, “Parallelization: Conway’s game of life,” [Online; accessed
18-09-2016].  

[17] J. Mache and K. L. Karavanic, “Teaching parallelism with  gpus and a
game of life assignment,” Journal of Computing  Sciences in Colleges,
vol. 28, no. 1, pp. 200–202, 2012.  

[18] M. R. Wick, “Using the game of life to introduce freshman students to
the power and elegance of design patterns,” in Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and  applications, ACM, 2004, pp. 103–105.  

[19] S.Beniak, Creating life: Conway’s life,
http://gamedevelopment.tutsplus.com/tutorials/creating-life-conways-
game-of-life–gamedev-558 , [Online; accessed 18-09-2016].

[20] E. F. Moore, “Machine models of self-reproduction,” in
Proc. Symp. Appl. Math, vol. 14, 1962, pp. 17–33. 

[21] J. Myhill, “The converse of moore’s garden-of-eden theorem,”
Proceedings of the American Mathematical Society,
vol. 14, no. 4, pp. 685–686, 1963. 

[22] G. A. Hedlund, “Endomorphisms and automorphisms of
the shift dynamical system,” Theory of computing systems,
vol. 3, no. 4, pp. 320–375, 1969. 

[23] T. Toffoli, “Computation and construction universality of
reversible cellular automata,” Journal of Computer and
System Sciences, vol. 15, no. 2, pp. 213–231, 1977. 

[24] P. Rendell, “This is a turing machine implemented in conway’s game of
life,” Website. www. rendell-attic. org/-
gol/tm.htm, 2005. 

[25] S. Wolfram, “Statistical mechanics of cellular automata,”
Reviews of modern physics, vol. 55, no. 3, p. 601, 1983.

[26] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based
assessment of programming: A review,” Journal on Educational
Resources in Computing (JERIC), vol. 5, no.
3, p. 4, 2005. 

[27] M. Wick, D. Stevenson, and P. Wagner, “Using testing
and junit across the curriculum,” in ACM SIGCSE Bulletin,
ACM, vol. 37, 2005, pp. 236–240. 

[28] U. v. Matt, “Kassandra: The automatic grading system,”
1998. 

[29] M. Joy, N. Griffiths, and R. Boyatt, “The boss online sub-
mission and assessment system,” Journal on Educational
Resources in Computing (JERIC), vol. 5, no. 3, p. 2, 2005.

[30] M. Cook, “Universality in elementary cellular automata,”
Complex systems, vol. 15, no. 1, pp. 1–40, 2004. 

[31] M. Cook, “A concrete view of rule 110 computation,” ArXiv
preprint arXiv:0906.3248, 2009. 

[32] E. Weisstein, Rule 30,
http://mathworld.wolfram.com/Rule30.html, [Online;
accessed 18-09-2016]. 

[33] E. Weisstein, Rule 54, http://mathworld.wolfram.com/Rule54.html,
[Online; accessed 18-09-2016]. 

[34] F. Berto and J. Tagliabue, “Cellular automata,” in The
Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed.,
Summer 2012, 2012. 

[35] A. Ilachinski, Cellular automata: A discrete universe.
World Scientific, 2001. 

[36] J. P. Crutchfield, “The calculi of emergence: Computation,
dynamics and induction,” Physica D: Nonlinear Phenom-
ena, vol. 75, no. 1, pp. 11–54, 1994. 

[37] Wikipedia, Continuous automaton,
https://en.wikipedia.org/wiki/Continuous_automaton  
[Online; accessed 8-September-2016]

