
On the Feasibility of Serverless Functions
in the Context of Auto-Graders

Sebastian Serth
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
sebastian.serth@hpi.de

Maximilian Paß
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
maximilian.pass@student.hpi.de

Christoph Meinel
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
christoph.meinel@hpi.de

Abstract—Learners interested in acquiring fundamental pro-
gramming skills may choose from a variety of different offers,
including Massive Open Online Courses (MOOCs). Usually, these
courses not only include lecture videos and multiple-choice quizzes,
but also feature hands-on programming exercises, allowing
learners to apply their newly acquired knowledge right away.
Since solving these exercises requires access to a programming
tool chain, most MOOCs embed their exercises in a web-based
environment supplying necessary tools. One of these so-called
auto-graders is CodeOcean, which allows learners to write and
run code or receive automated feedback. While a web-based
auto-grader lowers the entry barrier for learners to get started,
providing sufficient resources for all code executions poses an
additional challenge for the MOOC provider, especially during
high-demand periods. Therefore, we evaluated serverless functions
as offered by cloud computing providers for the use in auto-
graders and conducted a Randomized Control Trial. Although
serverless functions at first appear to be slower compared to our
existing containerized execution of learners’ code, they convinced
with more constant execution times in high-demand periods.

I. INTRODUCTION

Acquiring fundamental programming skills requires “learn-
ing by doing” [1], i.e., writing and executing source code
and observing the corresponding program behavior. Therefore,
learners need access to the respective programming tools,
such as a compiler, interpreter, or runtime. While some
learners might feel comfortable setting up the required tools
themselves, others might encounter difficulties, creating an
initial hurdle before they actually begin programming [2].
Especially in Massive Open Online Courses (MOOCs) targeting
beginners, the teaching team cannot support individual learners
to overcome this hurdle and prepare a suitable setup on their
local machines [3]. Instead, a web-based environment is desired,
allowing learners to access relevant tools just with a web
browser, eliminating the need for any local setup. In addition to
providing an educational environment for learners to write and
execute code, so-called auto-graders also assess learners’ code
submissions and provide automatic feedback. By integrating
auto-graders with a MOOC platform, learners can apply their
newly acquired knowledge in hands-on assignments and have
their score reflected in the course progress.

One of the auto-graders developed for the MOOC con-
text is CodeOcean [4]. So far, the web-based development

environment has been employed in more than 50 courses
teaching more than 100,000 learners Java, Python, Ruby, and
R basics. Despite other features, CodeOcean allows learners
to run their code and request automated feedback, which is
generated by executing teacher-defined tests in the respective
programming language. In the current setup, a set of backend
microservices is involved to execute learners’ code within pre-
defined containers, featuring the required tools required to run
code in the respective programming language.

With the work at hand, we question the status quo of using
containerized environments for executing code, and evaluate
the feasibility of serverless functions (as defined in Section III).
Therefore, we address the following research questions:
RQ1. Which impact have serverless functions on key require-

ments of code executions, such as execution times and
technical stability?

RQ2. How do learners compare serverless functions to con-
tainerized code executions?

RQ3. Which open questions arise from using serverless func-
tions in a programming MOOC?

II. BACKGROUND AND STATUS QUO

Our auto-grader CodeOcean was specifically designed for
the use in large-scale MOOCs, with three main requirements
in mind (see [5]): Interactivity (allowing real-time interactions),
Scalability (for an increasing number of parallel users) and
Flexibility (regarding the programming languages used). The
resulting architecture, proven in MOOCs with more than 17,000
active learners, is shown in Figure 1.

For each programming language, CodeOcean uses a ded-
icated execution environment containing language-specific
tools to run the learners’ source code. So far, all execution
environments were realized with Docker containers, which were
assigned to a single learner upon request and destroyed after an
inactivity period. To serve all learners simultaneously, we need
many parallel containers, which we distribute across multiple
hosts with the open-source container orchestrator Nomad.
While Nomad manages the lifetime of containers, we decided to
abstract from its Application Programming Interface (API) by
creating an own executor middleware called Poseidon, which
further manages the execution environments. For example, it
enforces time constraints for containers (i.e., by limiting the979-8-3503-4813-2/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 2
nd

 G
er

m
an

 E
du

ca
tio

n
Co

nf
er

en
ce

 (G
EC

on
) |

 9
79

-8
-3

50
3-

48
13

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
GE

CO
N

58
11

9.
20

23
.1

02
95

10
6

Web-based
Auto-Grader
CodeOcean

PostgreSQL

uses

Executor
Middleware
Poseidon

Nomad
Orchestrator

Node 1

Docker
Containers

Node n

...

manages

manages

posts files and
execution requests

relies on

manages:
- jobs / execution environments
- pre-warmed containers
- time and resource constraints

communicates
via WebSocket

Fig. 1. The current architecture of our auto-grader CodeOcean, consisting
of the front-facing web application, a custom execution middleware named
Poseidon and a Nomad cluster (cf. [5]). Learners’ code is executed in one of
the language-specific Docker containers and output is streamed to the learners’
browser through a WebSocket connection.

execution to a few seconds) and configures the containers as
desired. Furthermore, Poseidon manages a pool of so-called
pre-warmed containers for each execution environment, which
consists of idling containers not yet assigned to any user. As
soon as a new learner requests a code execution, a pre-warmed
container is used to avoid delays that would otherwise occur
when waiting for a new container to start.

Besides tackling the scalability through the chosen ar-
chitecture, our approach still poses some requirements on
the deployment of CodeOcean, Poseidon and the Nomad
orchestrator as well: The availability of (many) resources.
In our production environment, the Nomad cluster consists
of four agents executing Docker containers and three smaller
server nodes managing and orchestrating the workload, together
with one server instance each for CodeOcean, a PostgreSQL
database and Poseidon. In total, we allocated 240 GB RAM and
104 vCPU cores to these ten virtual machines (VMs), allowing
the system to be used in a MOOC with more than 17,000
active learners (more than 40,000 enrollments) successfully.
While those resources are only required for high-demand
periods, we also need to maintain a “baseline” of all servers
throughout the year for other courses and for learners accessing
the courses in self-paced mode. Practically, we are rarely
scaling our infrastructure and rather keep the system running
unchanged, thus blocking the allocated resources and incurring
(maintenance) costs. By evaluating serverless functions, as
introduced in the next Section III, we aim to reduce the
permanently-blocked resources. Potentially, this might save
costs or reduce the environmental impact (since hardware
resources can be better shared among various tasks).

III. RELATED WORK

Our work is mainly based on previous research in two areas:
The execution of learners’ code in the context of programming
education (see Section III-A) and the recent advancements of
serverless functions (as introduced in Section III-B).

A. Current Execution Approaches for Auto-Graders

Learning a programming language greatly benefits from
the actual programming assignments [3], as just answering
questions in multiple-choice quizzes is not enough [6]. However,
supporting learners to have access to a local execution envi-
ronment on their system is unfeasible for large-scale MOOCs,

since it would be too time-consuming for the teaching team and
also poses another hurdle to begin learning [3]. Therefore, many
course providers decided to provide setup-free environments
to their learners, either as part of a regular learning offer or to
provide automated feedback about the correctness of a solution.
We are aware of three different execution models that were
chosen for auto-graders so far, and argue that all models have
different advantages and disadvantages.

1) Browser-based Executions: From a provider’s perspective,
the code written by learners can be considered “untrusted”,
meaning that it could be malicious or otherwise have unattended
side effects. Therefore, one approach to execute code is by
running it in the learners’ browser, i.e., on the client side. While
this approach works smoothly for JavaScript as a browser-native
language [7], other programming languages require dedicated
handling. For example, the so-called Online-IDE designed for
Java programs includes a custom parser for Java code and
transpiles it to JavaScript [8]. Unfortunately, this approach also
limits the use of (external) libraries and has further limitations,
such as missing support for exception handling [8].

Another approach to this problem was taken by Sharrock
et al., who adapted a Linux VM to work in the browser with
their project called WebLinux [9]. Within the Linux instance,
the authors provided access to a command line and a compiler
tool chain for learners, allowing them to get started with the
C programming language. While their solution works offline
without being connected to the internet (once the page finished
loading), the performance of the tool varies by the device used.
For resource-constrained devices, such as older smartphones
or tablets, this might have an impact on the user experience.

2) Dedicated Server-side Executions: The requirements on
client devices can be further lowered by executing learners’
code on a backend server, for example as operated by the
MOOC provider. While this allows the provider to have more
control over the execution environment and further eases
adding arbitrary libraries, it also increases the attack vector
for malicious code. Hence, previous research has focussed
on securing the code executions. For some languages, such
as Java already running in the Java Virtual Machine (JVM),
Strickroth employed the built-in Java Security Manager to
define restrictions for the execution of user code [10].

Similarly, the auto-grader Praktomat originally written for
evaluating Java code, used the Java Security Manager for Java
executions, but also added support for other programming
languages through Docker containers [11]. According to
Flauzac et al., the usage of container technologies, including
Docker containers, efficiently isolates an application from the
host without the overhead of a traditional virtual machine [12].
Presumably, this is why many of the generic code execution
platforms employ container technologies to run arbitrary code,
including CodeRunner [13], codeboard.io or the ranna code
runner.

3) Other Server-based Execution Approaches: Since the
execution of some newly developed source code is not just
unique to educational settings with an auto-grader, further,
more general approaches exist. One of them is the use of

a continuous integration (CI) pipeline, usually attached to a
version control system such as Git, which executes pre-defined
commands for a set of source files. In an educational context,
a CI pipeline is mainly used to assess learners’ code, but it
does not allow learners to run their code interactively, which is
a hard requirement for us. Instead, learners submit their code
to the version control system. Depending on the configuration,
the code might either be evaluated shortly after with learners
having access to the feedback [14] or the code might only be
evaluated once the submission deadline passed, serving as a
grading hint for the teaching team [15].

B. Serverless Functions

Except for the browser-based execution, the majority of code
execution modes introduced in the previous section requires
a server with the corresponding resources allocated for the
respective demand. In this regard, the browser-based execution
model is different, since a server is only used to deliver the
web page and relevant resources, but not for the actual code
execution. Therefore, some authors refer to this approach
as being serverless [7]. While this definition is true from a
technical perspective, we refrain from using the term serverless
for browser-based executions in this paper, but rather reserve
it for use in the context of serverless functions.

Serverless functions, also referred to as Function-as-a-Service
(FaaS), describe a cloud computing model where events
trigger the execution of comparatively small and self-contained
programs, the so-called functions [16]. In this sense, serverless
functions can be seen as an evolution of microservices and
containers, further splitting those components in even smaller
units [17]. In contrast to regular server applications, serverless
functions are only executed when triggered by an event and
are rather short-living (some even restricted to a total of 15
minutes) [16]. Due to the small nature of serverless functions,
they can be scaled easily to match the current demand [16].
Serverless functions premiered in 2014 on Amazon Web Ser-
vices (AWS) with the launch of AWS Lambda, and are available
on all major cloud platforms and for on-premise installation by
today [17]. Similar to traditional cloud computing resources,
customers are billed in relation to execution duration and the
resources allocated for the serverless function.

IV. CONCEPT

Our vision is to enable code executions through serverless
functions in our auto-grader and thereby improve the scalability
for high-demand periods. Following, we could minimize the
overall resources allocated, and rather use the automatic scaling
of serverless functions. In the long-term, we might even drop
our Nomad cluster, which uses a majority of all resources, and
completely rely on the cloud provider’s infrastructure.

To achieve our vision and include serverless functions
seamlessly, we plan to extend Poseidon as our existing executor
middleware. We envision that only Poseidon is aware of the dif-
ferent execution models and abstracts from the specific details
for CodeOcean as our auto-grader. This also includes another
implicit requirement: The environments provided through our

Nomad cluster and the cloud-based serverless functions should
behave similarly, allowing all existing exercises to be used
with both environments interchangeably. This not only covers
how programs are executed and which libraries are available,
but also refers to the ability of both environments to stream
output generated by the learners’ program in real time.

V. IMPLEMENTATION

Adding support for serverless functions to our existing
architecture (as introduced in Section II) was mainly performed
by customizing the executor middleware Poseidon. From the
very beginning, Poseidon had a dedicated Nomad Manager,
being responsible for the communication with the Nomad
cluster. Similarly to the existing Nomad Manager, we added a
second Manager dedicated for the interaction with serverless
functions, in our case the AWS Manager. Further, we decided
to implement the chain of responsibility pattern to decide
which manager (and thereby which environment) should be
responsible for handling an execution request. With a chain of
responsibility, a request is passed in a pre-defined order from
one manager to another until one of the managers is finally
able to handle the request. In our case (and for the sake of our
evaluation), we decided to prioritize the AWS environment,
but the order can be swapped easily (i.e., to use the AWS
environment only as a fallback for high-demand periods).

For AWS Lambda, we developed a small Java program,
consisting of two classes and less than 250 lines of code. This
program is designed to run as a serverless function and accepts
an execution request with the respective code to execute. With
our code being deployed to AWS Lambda, we also had to
configure an API Gateway at AWS, responsible for routing
external WebSocket requests (originating from Poseidon) to a
newly invoked function instance. In contrast to Nomad, where
preparing a runner with the desired files and actually executing
the code are two separate requests, we combined them for the
AWS Lambda environment to comply with the event-driven
design principles of serverless functions. Figure 2 depicts the
resulting architecture of our auto-grader, supporting Nomad
and AWS environments simultaneously.

Web-based
Auto-Grader
CodeOcean

PostgreSQL

uses
Executor

Middleware
Poseidon

N
om

ad

E
nv

iro
nm

en
t

posts files and
execution requests

communicates
via WebSocket

AW
S

E

nv
iro

nm
en

t

Agent
Nodes

(+ Docker)

Server
Nodes

Lambda
(Serverless
Functions)

API Gateway
(WebSocket)

uses

uses

Chain of
Responsibility

Nomad
Manager

2

AWS
Lambda
Manager

1

Fig. 2. The resulting architecture of our auto-grader CodeOcean. In comparison
to Figure 1, the front-facing web application and the Nomad environment
remain unchanged. New is the AWS environment, consisting of an API gateway
listening to incoming WebSocket requests as well as the use of AWS Lambda
responsible for executing learners’ code. Now, Poseidon implements a chain
of responsibility (highlighted in blue) to decide which environment is used.

VI. EVALUATION

In order to assess the feasibility of serverless features in
the context of auto-graders and to test our architecture as

realistically as possible, we decided to perform a hands-on
evaluation in one of our programming MOOCs. Together with
the technical insights gained during the implementation, this
study forms the baseline for answering our research questions.

A. Methodology

For our evaluation, we chose one of our regular MOOCs
introducing novices to object-oriented programming in Java. In
addition to videos and subsequent multiple-choice quizzes, the
course included a total of 65 practical programming exercises
offered through CodeOcean. Those exercises allowed learners
to apply their newly acquired knowledge and receive automated
feedback to fix potential issues. As introduced in Section I,
learners were able to execute their code or request feedback at
any time and as often as they wished. A graded certificate was
rewarded to learners achieving at least 50% of all available
points through weekly homework assignments (40%) and all 65
programming exercises (60%). While the course was originally
offered in four weeks, the iteration used for our evaluation was
stretched to a total of two months to accommodate the limited
time budged available in a school context.

As part of the aforementioned Java course, we conducted
a Randomized Control Trial (RCT) with all learners solving
any programming exercise. Through a round-robin principle,
users were automatically assigned to one of the two execution
environments (Nomad with Docker containers or serverless
functions with AWS Lambda). Using this RCT, we compared
key metrics of code executions (such as the time taken for
each program invocation) between both environments. Since
we were particularly interested in high-demand periods, we
focused our evaluation on the top 5% of all hours with the most
code executions. We also identified low-demand periods, i.e.,
the 5% of hours with the fewest code executions. Furthermore,
we asked all learners of the course to participate in a voluntary
survey about CodeOcean. As we targeted a group of beginners
that just started to learn Java, we did not include any technical
details in the survey, but rather asked about their satisfaction
with different components on a five-point Likert scale.

B. Results

By course end, about 1,600 of the 2,200 enrolled learners
had attempted to solve a programming exercise and thus were
participating in our RCT. We measured a total of 370,000
executions, of which 47% were performed using the AWS
environment. Regardless of the execution environment used,
we did not experience any technical issues influencing our
experiment. Figure 3 visualizes the median time required
for each execution (referred to as the execution time in the
following) over the course period of two months. Especially
during the second half of the course period with a lower demand
of executions, we observed that the AWS environment was
slower than the Nomad environment and also showed some
spikes with a considerably slow code execution. Analyzing
the entire course period, we identified a statistically significant
difference between code executions on AWS and Nomad, with
a weak correlation (Spearman’s ρ = 0.22, p < 0.05).

0s

0.5s

1s

1.5s

 2s

2.5s

 3s

3.5s

4s

4.5s

Apr
il

25
th

M
ay

 2n
d

M
ay

 9t
h

M
ay

 16
th

M
ay

 23
rd

M
ay

 30
th

Ju
ne

 6t
h

Ju
ne

 13
th

Ju
ne

 20
th

Ju
ne

 27
th

E
xe

cu
ti

on
 T

im
e

Execution Environment AWS Lambda Nomad

Period High-Demand Low-Demand

Fig. 3. The median time for each code execution throughout the course. Each
line represents one of the execution environments, the colored background
indicates high- and low-demand periods. Interestingly, the AWS Lambda
environment irregularly showed an increased execution time of up to 4.5
seconds, which we did not observe with the Nomad environment.

When analyzing the execution time in high-demand periods,
we made another observation: While the median execution time
for the entire course was generally better with Nomad (1.27s)
than with AWS Lambda (1.42s), AWS performed slightly
better in high-demand periods (AWS 1.46s vs. Nomad 1.48s).
As shown in Figures 4 and 5, the variance of our Nomad
environment appears to be higher, especially in those high-
demand periods. However, we were not able to confirm this
trend statistically, as our data does not reveal a significant
difference between executions on both environments for high-
demand periods (p = 0.19). Also, we noticed that the median
execution time on Nomad increased by 17% in high-demand
periods (compared to the entire course period), whereas AWS
was considerable more constant with an increase of only 3%.

In order to gain a comprehensive understanding of serverless
functions in the context of an auto-grader, we also asked
our learners about their subjective experience with the code
executions. In total, we received 270 responses to our survey
and associated those with the execution environment provided
to them. Figure 6 shows the survey responses to which we

AWS
Lambda

Nomad

1s 1.25s 1.5s 1.75s 2s 2.25s 2.5s
Execution Time Throughout the Course

E
xe

cu
ti

on
E

nv
ir

on
m

en
t

Fig. 4. Execution time for all exercises on both environments. The colored lines
mark the median, the black cross shows the average. The Nomad environment
is usually faster; AWS shows more (slow) outliers.

AWS
Lambda

Nomad

1s 1.25s 1.5s 1.75s 2s 2.25s 2.5s
Execution Time During High-Demand Periods

E
xe

cu
ti

on
E

nv
ir

on
m

en
t

Fig. 5. Similar to Figure 4, but focussing on high-demand periods (the busiest
5% of the course period). In comparison to Figure 4, the variance of the AWS
environment decreased, and fewer outliers are visible.

3%
6%

79%
74%

18%
20%

15%
6%

62%
68%

23%
26%

6%
13%

78%
73%

16%
13%

7%
3%

69%
74%

25%
22%

Statement 4: Even after a longer break (about the next day), the execution was just as fast as usual.

Statement 3: I did not encounter any technical issues with running programs on CodeOcean.

Statement 2: I consider the execution of my programs on CodeOcean to be fast.

Statement 1: Overall, I am satisfied with the execution of my Java programs in CodeOcean.

100 50 0 50 100

AWS
Nomad

AWS
Nomad

AWS
Nomad

AWS
Nomad

Percentage

Response Strongly
Disagree Disagree

Neither
Disagree
Nor Agree

Agree Strongly
Agree

Fig. 6. An excerpt of 270 responses received to our voluntary survey, separated
by the execution environment provided to learners.

refer in this paper. Overall, about 74% of all Nomad users
and about 79% of all AWS users were satisfied with the
code execution (Figure 6, Statement 1). The performed Mann–
Whitney U test revealed no significant difference between the
two groups (U = 8853, p = 0.50). Specifically asked about the
duration of their code executions (Statement 2), Nomad (68%
satisfaction) performed insignificant better than AWS Lambda
(62% satisfaction, U = 7552, p = 0.09). Interestingly, more
AWS users agreed to the statement that they did not experience
technical issues than Nomad users (AWS 78% vs. Nomad 73%,
Statement 3, U = 8223, p = 0.93), aside from the fact that our
monitoring did not reveal any server-side issues, neither with
AWS nor with Nomad. We also asked learners whether they
noticed any difference between consecutive executions and
those happening after a longer period of inactivity, such as
those performed after taking a break. While a majority did
not notice any difference, about 7% of AWS users and 3%
of Nomad users reported such a difference (see Statement 4).
Here, the Mann–Whitney U test revealed significant differences
(U = 6793, p = 0.04) with a small effect size (r = 0.13).

C. Discussion

The evaluation allowed us to gain first insights about the
feasibility of serverless functions in the context of an auto-
grader. Considering the entire course period, the performance
of AWS Lambda was not as good as the one of Nomad,
and accordingly learners rated AWS lower. Especially in low-
demand periods and after longer times of inactivity, AWS
Lambda did not yield satisfying results. We also attribute the
spikes in the execution time (as seen in Figure 3) to those
low-demand periods. Hence, the accumulation of spikes in the
second half of the course is not surprising to us, with more
learners dropping out. Simultaneously, the performance of our
Nomad environment was best in the final course weeks, most
likely also caused by the lower number of learners.

Furthermore, we see that executions in our Nomad envi-
ronment became slower with an increasing usage, whereas
the performance of AWS was more stable. The behavior we
observed for AWS Lambda is in line with findings from Baldini
et al., who describe pre-warming strategies: Extended phases

of inactivity will cause the cloud provider to reduce the number
of functions deployed for a customer [17]. For the Nomad en-
vironment, we implemented our own pre-warming mechanism
with a static pool size (see Section II), thus preventing those
issues in low-demand periods. Therefore, the survey results
awarding Nomad with a slightly better performance after an
extended phase of inactivity seem plausible to us.

In high-demand periods, the automatic scaling performed by
AWS turned out to be advantageous. In those situations, the
variance of the execution time was considerably lower with
AWS Lambda than with Nomad, and the median time was
almost unchanged in comparison to the entire course period.
Potentially, it is this steadiness, which might cause learners
to associate less technical issues to the code execution with
AWS than Nomad. Overall, the constant performance of AWS
Lambda is especially useful in high-demand periods, which
can be used to balance peak loads and to provide learners with
a stable execution environment at all times.

VII. FUTURE WORK

Through our work, we were not only able to test the general
idea, but also gained first insights into the isolation of code
executions on AWS Lambda. While AWS uses VMs to protect
against malicious code as a provider, subsequent serverless
functions might run in the same context, partially sharing some
temporary files. Since we were unable to control which context
is used by AWS, we cannot prevent the code execution of one
user to access an arbitrary file previously created by another
user. This limitation, usually being beneficial as another cache
layer, is well documented by AWS [18], but is unacceptable for
our use case. Therefore, we want to compare different providers
of serverless functions in the future, focussing on function reuse
and isolation capabilities. Additionally, we want to compare
different pricing options (i.e., regarding the main memory or the
processor architecture) and reduce the environmental impact.

Further, we want to expand our evaluation to cover more
programming languages, take the learners’ internet latency into
account, and test the system in larger courses. The one chosen
with about 1,600 active learners was a magnitude smaller
than other courses we managed (with more than 17,000 active
learners) and only focussed on object-oriented programming
with Java. In some other courses, for example those with
R and Python, we have other types of exercises featuring
interactive Turtle graphics or allowing learners to download
artifacts (e.g., figures created by their code run). Ideally, we
would also transition to a language-agnostic function or a
customized base image to accept incoming requests from our
executor middleware Poseidon, making it easier to add support
for additional programming languages.

VIII. CONCLUSION

Programming education in Massive Open Online Courses
(MOOCs) benefits from hands-on exercises, allowing learners
to apply their newly acquired knowledge. Since supporting
learners individually on setting up a local development envi-
ronment is not manageable by teaching teams, a web-based

programming environment is desired [3]. One of those setup-
free environments is our auto-grader CodeOcean, allowing
learners to execute code and receive automated feedback. In
this paper, we evaluated so-called serverless functions (offered
by cloud computing providers) in an introductory Java course
as an alternative to the current container-based execution.

Impact of serverless functions on code executions (RQ1):
Generally speaking, serverless functions showed a higher me-
dian execution time compared to the container-based approach.
However, this changed during high-demand periods, where our
systems were slowing down, while the serverless functions
continued to run with an unchanged performance. This makes
the serverless functions ideal for peak workloads.

Learners’ experience (RQ2): In a voluntary survey, learners
rated both execution environments comparably, revealing only
minor differences. Confirming our measurements, learners
identified a slower execution after longer periods of inactivity
with serverless functions (due to less pre-warmed executions),
but also showed a higher satisfaction and less technical issues
(potentially caused the more uniformed execution times).

Open questions and future work (RQ3): With the current
implementation, we focused on Java exercises, leaving more
advanced use cases (such as interactive Turtle graphics or
downloadable artifacts) to future work. Also, we identified a
challenge regarding the isolation of executions performed by
different users that requires further investigation.

Overall, our evaluation suggests that employing serverless
functions in the context of an auto-grader is feasible. It has
shown to be especially beneficial in high-demand periods,
outperforming our traditional container-based execution mode.
Thereby, we contribute to scale online courses beyond their
current (technical) limitations and empower an increasing
number of learners to participate in programming MOOCs.

REFERENCES

[1] A. Robins, J. Rountree, and N. Rountree, “Learning
and Teaching Programming: A Review and Discussion,”
Computer Science Education, no. 2, 2003.

[2] H. T. Tran, H. H. Dang, K. N. Do, T. D. Tran, and
Vu Nguyen, “An interactive Web-based IDE towards
teaching and learning in programming courses,” in IEEE
International Conference on Teaching, Assessment and
Learning for Engineering (TALE), Bali, Indonesia, 2013.

[3] T. Staubitz, H. Klement, J. Renz, R. Teusner, and
C. Meinel, “Towards practical programming exercises
and automated assessment in Massive Open Online
Courses,” in IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE),
Zhuhai, China, 2015.

[4] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C.
Meinel, “CodeOcean - A versatile platform for practical
programming excercises in online environments,” in
2016 IEEE Global Engineering Education Conference
(EDUCON), Abu Dhabi, 2016.

[5] S. Serth, D. Köhler, L. Marschke, F. Auringer, K.
Hanff, J.-E. Hellenberg, T. Kantusch, M. Paß, and
C. Meinel, “Improving the Scalability and Security of
Execution Environments for Auto-Graders in the Context
of MOOCs,” in Proceedings of the Fifth Workshop
"Automatische Bewertung von Programmieraufgaben"
(ABP 2021), Virtual Event, Germany, 2021.

[6] P. Blayney and M. Freeman, “Automated formative
feedback and summative assessment using individualised
spreadsheet assignments,” Australasian Journal of Edu-
cational Technology, no. 2, 2004.

[7] V. Karavirta and P. Ihantola, “Serverless automatic
assessment of Javascript exercises,” in Proceedings of the
fifteenth annual conference on Innovation and technology
in computer science education, Ankara, Turkey, 2010.

[8] M. Pabst. “[Online-IDE] LernJ vs. Java: Unterschiede.”
(2023), [Online]. Available: https://www.learnj.de/doku.
php?id=unterschiede_zu_java:start.

[9] R. Sharrock, L. Angrave, and E. Hamonic, “WebLinux:
a scalable in-browser and client-side Linux and IDE,”
in Proceedings of the Fifth Annual ACM Conference on
Learning at Scale, London United Kingdom, 2018.

[10] S. Strickroth, “Security Considerations for Java Graders,”
in Workshop “Automatische Bewertung von Program-
mieraufgaben” (ABP 2019), Essen, Germany, 2019.

[11] J. Breitner, M. Hecker, and G. Snelting, “Der Grader
Praktomat,” in Automatisierte Bewertung in der Pro-
grammierausbildung, 6 vols., Münster, Germany, 2016.

[12] O. Flauzac, F. Mauhourat, and F. Nolot, “A review
of native container security for running applications,”
presented at the The 17th International Conference on
Mobile Systems and Pervasive Computing (MobiSPC
2020), Leuven, Belgium, 2020.

[13] R. Lobb and J. Harlow, “Coderunner: a tool for assessing
computer programming skills,” ACM Inroads, 2016.

[14] H. Bai, “GoAutoBash: Golang-based multi-thread auto-
matic pull-execute framework with GitHub webhooks
and queuing strategy,” in International Conference on
Automation Control, Algorithm, and Intelligent Bionics
(ACAIB 2022), Qingdao, China, 2022.

[15] M. Hofbauer, C. Bachhuber, C. Kuhn, and E. Steinbach,
“Teaching software engineering as programming over
time,” in Proceedings of the 4th International Work-
shop on Software Engineering Education for the Next
Generation, Pittsburgh Pennsylvania, 2022.

[16] J. Nupponen and D. Taibi, “Serverless: What it Is, What
to Do and What Not to Do,” in 2020 IEEE International
Conference on Software Architecture Companion (ICSA-
C), Salvador, Brazil, 2020.

[17] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V.
Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A.
Slominski, and P. Suter, “Serverless Computing: Current
Trends and Open Problems,” in Research Advances in
Cloud Computing, Singapore, 2017.

[18] AWS. “Understanding the Lambda execution environ-
ment,” AWS Lambda Operator Guide. (2023), [Online].
Available: https://docs.aws.amazon.com/lambda/latest/
operatorguide/execution-environment.html.

