
Impact of Contextual Tips for Auto-Gradable
Programming Exercises in MOOCs

Sebastian Serth
Hasso Plattner Institute

Potsdam, Germany
sebastian.serth@hpi.de

Ralf Teusner
Hasso Plattner Institute

Potsdam, Germany
ralf.teusner@hpi.de

Christoph Meinel
Hasso Plattner Institute

Potsdam, Germany
christoph.meinel@hpi.de

ABSTRACT
Learners in Massive Open Online Courses offering practical
programming exercises face additional challenges next to the
actual course content. Beginners have to find approaches to
deal with misconceptions and often struggle with the correct
syntax while solving the exercises. The paper at hand presents
insights from offering contextual tips in a web-based develop-
ment environment used for practical programming exercises.
We measured the effects of our approach in a Python course
with 6,000 active students in a hidden A/B test and additionally
used qualitative surveys. While a majority of learners valued
the assistance, we were unable to show a direct impact on
completion rates or average scores. We however noticed that
users requesting tips took significantly longer and made more
use of other assistance features of the platform than users in
our control group. Insights from our study can be used to tar-
get beginners with more specific hints and provide additional,
context-specific clues as part of the learning material.

Author Keywords
tip; hint; programming; summary; example; exercise; MOOC

CCS Concepts
•Social and professional topics → Computer science ed-
ucation; •Applied computing → E-learning; Interactive
learning environments;

INTRODUCTION
Massive Open Online Courses (MOOCs) covering program-
ming education are increasingly popular and provide a low
barrier for beginners to start learning. However, most novices
find programming difficult and, in distance education, spend
multiple hours on try-and-error approaches without achieving
the desired effect. While it is beneficial for beginners to find a
solution themselves, clueless guessing does not allow learners
to reflect on mistakes [2]. Since beginners often have problems
summarizing their code-level questions meaningfully, several
efforts have been made to support learners directly within the
programming environment.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

L@S’21, June 22–25, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8215-1/21/06.

DOI: https://doi.org/10.1145/3430895.3460166

In this paper, we introduce and evaluate contextual tips pro-
vided by the teaching team for programming exercises as an
additional effort to assist learners in their help-seeking behav-
ior. We address the following research questions:

RQ1. How do tips influence the help-seeking behavior?

RQ2. Which learners profit more from tips than others?

RQ3. Do tips have an impact on key metrics such as the com-
pletion rate, working times, or scores?

RELATED WORK
This paper contributes to the field of Computer Science Edu-
cation with MOOCs where (next-step) hints and help-seeking
behavior has been of special interest recently.

Hints in Programming Education
Depending on the grading approach, some of the most promi-
nent examples of contextual hints include tips for unit tests,
incremental to-do notes, or annotations in the source code.

Providing scaffolded source code is proven to direct the learn-
ers’ focus on specific aspects of an assignment [3] and can
optionally include source code comments to ease navigation
or highlight open to-dos. In a CS1 course, Antonucci et al.
offered students the ability to get textual hints through to-do
notes or to reveal parts of a solution. Their research indicates
the need for a hint system in a beginner course and outlines
the willingness of students to accept hints [1].

Other approaches to automatically generate hints are com-
pared by Price et al., who focus on next-step hint genera-
tion [9]. These systems use submissions from various learners
for a given problem to infer hints representing a common
problem-solving strategy. Hints generated by this system are
specifically tailored for the user’s problem but vary in their
quality and also depend on previously available data [9].

In contrast to next-step hints, some auto-graders scoring sub-
missions enrich test results to increase comprehensibility.
Király et al. argue that textual hints along with failed test
results will enable students to fix common problems faster [6].
In 2019, Marwan et al. measured the impact of adding a tex-
tual explanation to next-step hints on “novices’ programming
performance” [7]. The authors showed that beginners greatly
benefit from a written explanation and thus were better able to
relate the hint to their problem. Similar approaches improve
the understandability of occurring errors by translating cryptic
error messages to more human-readable explanations [4].

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

307

https://doi.org/10.1145/3430895.3460166

In addition to MOOCs teaching the basics of programming,
many providers offer interactive web tutorials with an online
code editor and written step-by-step instructions. A particular
disadvantage of these approaches is the missing explanation
of why and in which situations a concept should be used [5].

Help-Seeking Behavior
Throughout a given programming assignment, students might
use earlier course materials or external information. However,
for novices, “one source of complexity is the availability of a
wide variety of information sources” [8]. Hence, previous re-
search focussed on supporting students without overwhelming
them. Serth et al. suggested that the presentation of content
can support students in revisiting previous content [10].

Another approach is to introduce Requests for Comments [12].
These allow learners to ask fellow learners questions about
their implementation and automatically include relevant source
code together with the run and test output. The researchers
have shown the positive impact of Requests for Comments and
validated that they support the help-seeking behavior.

CONCEPT
Beginners in a programming MOOC struggling with a given
exercise should have direct access to dedicated, high-quality
resources while implementing code. One of the solutions we
propose is to offer instantly available tips serving as a reminder
for programming concepts. In our vision, tips are related to
the given exercise but are not directly influenced by the current
implementation. Therefore, problem-solving strategies, which
participants need to develop during a MOOC to continue pro-
gramming autonomously, are still being practiced.

In our concept, each tip consists of four parts: (1) a describing
title, (2) a short summary of the concept, (3) a self-contained
example, and (4) subsequent tips if applicable. The title is
the only information students can read without interacting
with the tip preventing users from unintentionally spotting a
solution. A tip may include nested tips allowing learners to
look up further information. Nested tips can either be used to
provide incremental hints on the same topic becoming more
specific towards a possible solution or can be used to structure
different aspects of one topic into smaller components.

As we consider tips to be an integral part of the learning mate-
rial and thus the course experience designed by course instruc-
tors, we refrain from automatically generating hints. Instead,
each tip is contextually tailored for the specific exercise.

IMPLEMENTATION
We implemented a configurable framework for editing and dis-
playing tips within the web-based programming environment
CodeOcean [11]. Learners have direct access to the tips while
implementing a given programming assignment. The list of
tips is separated from other elements of the page ensuring that
tips are perceived as subtle rather than visually distracting.

Tips are edited independently from exercises and thus can be
reused multiple times. For each exercise, instructors select tips
and can optionally build an ordered tree structure using a drag-
and-drop editor. This supports the teaching team in nesting
tips to provide different levels of information for learners.

N=7286 N=3614 N=402 N=104 N=33

100%

200%

300%

Beginner Basic Good Very Good Expert

Self−Assessed Skill Level at Course Start

R
e
la

ti
ve

 U
s
a
g
e
 o

f
T

ip
s
 p

e
r

E
xe

rc
is

e

N=720 N=1783 N=2188 N=487 N=65

Very Easy Easy Medium Difficult Very Diff.

Perceived Difficulty of the Second Week

Figure 1. Relative number of tips used per exercise (left) according to
the self-assessed skill level (N = 11,439), and (right) compared to the
perceived difficulty (N = 5,243). A value of 100% represents the mean
tips used by students per exercise. Black bars are median values.

EVALUATION
To validate our concept, we tested our implementation and
gathered results from a field experiment.

Methodology
Targeting novices, we decided to conduct our evaluation in
a four-week Python programming introduction MOOC. At
the course end, 9,517 students were enrolled with a show rate
of 79%. The teaching team manually authored tips for all
exercises of the first two weeks. In the second week, the most
basic hints were omitted in favor of tips covering new topics.

To measure the effects of the availability and usage of tips,
we conducted an A/B testing within CodeOcean. Learners
were randomly assigned with a probability of 50% to either
the treatment group with tips or the control group without tips.
Regular surveys were used to capture feedback about the tips.

Results
In total, 6,067 learners accessed at least one programming
exercise in CodeOcean and thus participated in our A/B testing
setup. 3,032 users were able to use tips, while 3,035 were not.
The course contained a total of 60 exercises of which 33 (55%)
were in the first two weeks. For those exercises, we created 57
different tips which were referenced 242 times. Each exercise
contained between 2 and 28 tips (median: 6). Across all
exercises, learners sought help through a tip 67,049 times
(28.31 tips per user on mean, standard deviation σ = 30.72).

Figure 1 (left) shows that learners self-identifying as beginners
at course start have the highest usage ratio of tips. A decrease
is observed among course participants with a higher skill level.
Based on the perceived difficulty of the second week, Figure 1
(right) shows that most learners rating the exercises as very
easy used fewer tips. A steady increase can be seen up to
those learners rating the second week as difficult. More tips
were requested during the second week (32.14% of learners,
σ = 11.66%) than in the first week (15.05% of learners, σ =
6.98%). When learners had access to tips, their mean working
time slightly increased (Welch Two Sample t-test t = −2.6,
p = 0.005) by 2.7%. Learners using tips required 68% more,
students not using tips about 20% less time than all users.

An analysis of all students enrolled in the course showed that
a higher skill level reduced the time required to complete an

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

308

50%

100%

150%

Beginner Basic Good Very Good Expert

Self−Assessed Skill Level at Course StartR
e
la

ti
ve

 W
o
rk

in
g
 T

im
e
 p

.
E

xe
rc

is
e

Usage of Tips Not Used Tips Used

Figure 2. Comparison of the relative working time that learners required
for solving a given exercise in the first half of the course depending on
their skill level and the usage of tips (N = 97,851). A value of 100%
represents the mean working time by students to solve the exercise.

exercise. Further, Figure 2 illustrates which effects the usage
of tips can have on the working time. In particular, beginners
revealing tips require significantly longer to solve an exercise.

All learners had access to Requests for Comments (RfCs) al-
lowing them to get help from peers. The mere availability
of tips did not impact the usage of RfCs (Welch Two Sample
t-test t =−0.47, p = 0.32). As visualized in Figure 3, learn-
ers solving an exercise did not show any change in requesting
comments by the availability of tips (mean: 82.52% control
and 85.9% treatment group). Only those learners not solv-
ing the assignment used less RfCs when tips were available
(458.2% and 623.7% respectively). Course participants not
solving an exercise are much more likely to seek help through
RfCs (537.5%) than learners finding a solution (84.2%).

In addition to the solving state of an exercise, Figure 3 relates
the usage of tips to the relative number of RfCs. Course
participants finding a solution for an exercise request 9.7 times
more comments when using tips compared to students solving
an assignment without any tip (mean: 286.3% vs. 29.5%).

According to our evaluation, neither the availability nor the
usage of contextual tips was able to increase the completion
rate. Moreover, the data shows no significant difference in the
number of code executions performed by students.

Discussion
Our results are a first evaluation of contextual tips in a pro-
gramming MOOC and allow drawing some conclusions. As
shown in Figure 1 (left), our primary target group of novices
used tips more often than experts to seek assistance. Beginners
also spent more time on a given exercise before completing
the given task (Figure 2). The higher usage of tips by learners
with a lower skill level might indicate that beginners require
more help with the given exercises than experts.

Comparing the usage of tips in the first and second week, we
observed an increase in the mean number of tips used per
exercise. Learners perceived the second week as more chal-
lenging and revealed more tips. We assume that the indicated
reduction of tips used by learners expressing major difficulties
with the content is caused by the low participation of these
users in the survey and potential course drop-outs.

For learners finishing an exercise, we conclude that the mere
availability of tips had no major impact on the usage of RfCs.

0%

200%

400%

600%

Control Group Treatment Group Control Group Treatment Group

Exercise Not Solved Exercise Solved

R
e
la

ti
ve

 U
s
a
g
e
 o

f
R

e
q
u
e
s
ts

fo
r

C
o
m

m
e
n
ts

 p
e
r

E
xe

rc
is

e

Tips Not Available Available
Not Used

Used

Figure 3. Comparison of the relative number of Requests for Comments
(RfCs) created by learners, their A/B testing group, the usage of tips and
the final status of an exercise (N = 134,102). A value of 100% represents
the mean number of RfCs created by students per exercise. For the
treatment group, the figure shows the weighted mean of RfCs as “Tips
Available” consisting of learners either using a tip or not.

The high number of RfCs by learners of our treatment group
receiving tips indicates that those learners are likely to use all
available assistance to finally solve an exercise. Analyzing
the usage of tips among learners not completing an exercise
indicated a reduced usage of RfCs when they had access to
tips. We suppose that for those learners, tips answered some
of the questions that arose while working on the exercise.

An analysis of the working times per skill level and the usage
of tips allow us to conclude that those users having issues with
an exercise and, therefore, taking longer to solve it, were more
inclined to reach out for additional assistance. Hence, reading,
understanding, and applying the tip further took time leading
to an overall increased working time for these students.

While we were not able to prove that the availability of tips
has an impact on the completion rate of course participants,
our data shows that we were able to reach our primary target
group of novices with the introduction of contextual hints.

FUTURE WORK
The majority of hints used in the Python course focussed on
helping students to identify the most suitable concept for a
given problem and remember the correct syntax. Therefore,
we focused on cheat sheet-inspired tips providing syntax in-
formation in this paper. In upcoming research, we want to
compare the impact of different approaches for tips and plan
to include more exercise-specific tips, similar to next-step
hints. In addition, we aim to increase the perceived value and
usefulness of tips with additional information.

Further, our survey results suggest that the discoverability of
relevant tips within CodeOcean can be enhanced and might
benefit from additional focus. Finally, we plan to integrate tips
to just-in-time interventions or suggest learners a specific hint
depending on the result of the code execution and test output.

CONCLUSION
In this paper, we evaluated the impact of contextual tips avail-
able to learners within a web-based programming environment.

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

309

We conducted an A/B testing in a regular Python course with
6,067 learners and offered tips for our treatment group. Based
on our evaluation, we answer our research questions:

RQ1. How do tips influence the help-seeking behavior?

The introduction of contextual tips does not negatively af-
fect the usage of peer-to-peer help systems. Instead, learners
showed a higher chance of requesting comments when they
also used tips. Some participants not finishing an exercise
reduced the number of Requests for Comments when tips were
available. This observation might suggest that tips were able
to answer upcoming questions for them. Throughout the first
half of the course, nearly 25% of learners regularly revealed
our contextual hints while implementing an exercise.

RQ2. Which learners profit more from tips than others?

Learners self-identifying as beginners are the user group that
benefits most from contextual tips. The higher the skill level
at the beginning of a course is, the fewer tips are used. Our
research emphasizes that more challenging exercises increase
the learners’ need for additional hints.

RQ3. Do tips have an impact on key metrics such as the com-
pletion rate, working times, or scores?

According to our evaluation, the mere availability of tips
slightly increases the mean working time for learners by 2.7%.
In particular, beginners using tips to get support spend more
time within the exercise and are more likely to use other assis-
tance features. Besides that, neither an impact of tips on the
completion rate nor the scores of participants was discernible.

Overall, our findings highlight that tips are valued by novices
as a relevant part of their help-seeking behavior. Contextual
tips are an additional offer not impeding existing assistance
features. Answers from subsequent surveys indicate the great
potential tips can have and motivate us to continue research-
ing the impact of tips. The introduction of tips as presented
throughout this paper supports students to get contextual assis-
tance within the learning environment of a MOOC.

REFERENCES
[1] Paolo Antonucci, Christian Estler, Durica Nikolić,

Marco Piccioni, and Bertrand Meyer. 2015. An
Incremental Hint System For Automated Programming
Assignments. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer
Science Education. ACM, Vilnius Lithuania, 320–325.
DOI:http://dx.doi.org/10.1145/2729094.2742607

[2] Kyle J. Harms, Jason Chen, and Caitlin L. Kelleher.
2016. Distractors in Parsons Problems Decrease
Learning Efficiency for Young Novice Programmers. In
Proceedings of the 2016 ACM Conference on
International Computing Education Research.
Melbourne, Australia, 241–250. DOI:
http://dx.doi.org/10.1145/2960310.2960314

[3] Ville Isomöttönen, Antti-Jussi Lakanen, and Vesa
Lappalainen. 2011. K-12 Game Programming Course
Concept Using Textual Programming. In Proceedings of
the 42nd ACM Technical Symposium on Computer

Science Education - SIGCSE ’11. Dallas, TX, USA, 459.
DOI:http://dx.doi.org/10.1145/1953163.1953296

[4] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren.
2019. A Systematic Literature Review of Automated
Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1 (Jan. 2019),
1–43. DOI:http://dx.doi.org/10.1145/3231711

[5] Ada S. Kim and Andrew J. Ko. 2017. A Pedagogical
Analysis of Online Coding Tutorials. In Proceedings of
the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. Seattle, WA, 321–326.
DOI:http://dx.doi.org/10.1145/3017680.3017728

[6] Sándor Király, Károly Nehéz, and Olivér Hornyák. 2017.
Some Aspects of Grading Java Code Submissions in
MOOCs. Research in Learning Technology 25 (2017),
16. DOI:http://dx.doi.org/10.25304/rlt.v25.1945

[7] Samiha Marwan, Nicholas Lytle, Joseph J. Williams,
and Thomas W. Price. 2019. The Impact of Adding
Textual Explanations to Next-Step Hints in a Novice
Programming Environment. In Proceedings of the 2019
ACM Conference on Innovation and Technology in
Computer Science Education. Aberdeen UK, 520–526.
DOI:http://dx.doi.org/10.1145/3304221.3319759

[8] Silvia Muller, Monica Babes-Vroman, Mary Emenike,
and Thu D. Nguyen. 2020. Exploring Novice
Programmers’ Homework Practices: Initial Observations
of Information Seeking Behaviors. In Proceedings of the
51st ACM Technical Symposium on Computer Science
Education. ACM, Portland OR USA, 333–339. DOI:
http://dx.doi.org/10.1145/3328778.3366885

[9] Thomas W. Price, Yihuan Dong, Rui Zhi, Benjamin
Paaßen, Nicholas Lytle, Veronica Cateté, and Tiffany
Barnes. 2019. A Comparison of the Quality of
Data-Driven Programming Hint Generation Algorithms.
International Journal of Artificial Intelligence in
Education 29, 3 (Aug. 2019), 368–395. DOI:
http://dx.doi.org/10.1007/s40593-019-00177-z

[10] Sebastian Serth, Ralf Teusner, Jan Renz, and Matthias
Uflacker. 2019. Evaluating Digital Worksheets with
Interactive Programming Exercises for K-12 Education.
In IEEE Frontiers in Education (FIE). Cincinnati, USA.
DOI:http://dx.doi.org/10.1109/FIE43999.2019.9028680

[11] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan
Renz, and Christoph Meinel. 2016. CodeOcean - A
Versatile Platform for Practical Programming Excercises
in Online Environments. In IEEE Global Engineering
Education Conf. (EDUCON). Abu Dhabi, 314–323.
DOI:http://dx.doi.org/10.1109/EDUCON.2016.7474573

[12] Ralf Teusner, Thomas Hille, and Thomas Staubitz. 2018.
Effects of Automated Interventions in Programming
Assignments: Evidence from a Field Experiment. In
Proceedings of the Fifth Annual ACM Conference on
Learning at Scale - L@S ’18. London, UK. DOI:
http://dx.doi.org/10.1145/3231644.3231650

L@Scale Works-in-Progress L@S'21, June 22–25, 2021, Virtual Event, Germany

310

http://dx.doi.org/10.1145/2729094.2742607
http://dx.doi.org/10.1145/2960310.2960314
http://dx.doi.org/10.1145/1953163.1953296
http://dx.doi.org/10.1145/3231711
http://dx.doi.org/10.1145/3017680.3017728
http://dx.doi.org/10.25304/rlt.v25.1945
http://dx.doi.org/10.1145/3304221.3319759
http://dx.doi.org/10.1145/3328778.3366885
http://dx.doi.org/10.1007/s40593-019-00177-z
http://dx.doi.org/10.1109/FIE43999.2019.9028680
http://dx.doi.org/10.1109/EDUCON.2016.7474573
http://dx.doi.org/10.1145/3231644.3231650

	Introduction
	Related Work
	Hints in Programming Education
	Help-Seeking Behavior

	Concept
	Implementation
	Evaluation
	Methodology
	Results
	Discussion

	Future Work
	Conclusion
	References

